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Task Adaptation Strategies for Vision-Language Models

Vision foundation models have emerged as pivotal architectures in artificial intel-

ligence, transforming computational perception by distilling vast visual knowledge

into powerful, generalizable representations. This thesis explores the capabilities

and adaptability of these models with a particular focus on Vision-Language Models

(VLMs), such as CLIP, examining how their image-text-aligned representations can

be extended to tasks requiring fine-grained visual understanding. Through a series

of five works, we address the central question: To what extent can off-the-shelf visual

representations from foundation models be leveraged for various downstream tasks

with minimal task-specific supervision?

First, we introduce CLIP-DIY, demonstrating how CLIP’s capabilities can be

extended to open-vocabulary semantic segmentation through modified inference

strategies rather than model retraining. We further develop CLIP-DINOiser, a

method that enhances dense CLIP representations by incorporating priors from

self-supervised representations through a lightweight adaptation module. Our third

contribution explores the critical role of textual prompts in VLM performance, show-

ing that understanding pre-training data distribution can be an effective strategy

for improved downstream performance.

Moving beyond model adaptation, we propose a systematic evaluation framework

for visual representations using Visual Question Answering as an exemplary task,

providing insights into which foundation models are best suited for this applica-

tion. Finally, we demonstrate the potential of visual foundation models to address

complex real-world challenges, such as the personalization of recommended content.

Specifically, we develop a method using a VLM for personalized image collection

summarization, leveraging the model’s multimodal capabilities while requiring

almost no manual annotations.

Through these contributions, we establish that visual foundation models can be ef-

fectively adapted to complex visual understanding tasks with minimal computational

and annotation requirements. Our findings advance the field’s understanding of

efficient model adaptation strategies while providing practical solutions for exploiting

powerful visual systems across diverse downstream applications.

Keywords: downstream task adaptation, image-text alignment, open-world percep-

tion, unsupervised/self-supervised learning
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Strategie Adaptacji Modeli Wizualno-Językowych do Zadań

Docelowych

Niniejsza praca doktorska bada adaptacyjność modeli fundamentalnych do re-

prezentacji obrazu, do złożonych zadań docelowych, ze szczególnym naciskiem na

podejścia wykorzystujące wewnętrzne możliwości modeli fundamentalnych przy

minimalizacji kosztów ich modyfikacji, w tym dodatkowego treningu.

Nasze badania koncentrują się głównie na modelach wizualno-językowych (VLM),

analizując, jak ich multimodalne reprezentacje obrazu i tekstu mogą być rozszerzone

do zadań wymagające szczegółowej reprezentacji obrazu. Poprzez pięć powiązanych

ze sobą prac, odpowiadamy na centralne pytanie: W jakim stopniu reprezentacje

wizualne z modeli fundamentalnych mogą być wykorzystane do różnych zadań doce-

lowych przy minimalnym nadzorze?

W pierwszej części doktoratu omawiamy metody adaptacji modelu CLIP do zada-

nia semantycznej segmentacji z nieograniczonym słownikiem klas. Nasza pierwsza

metoda, CLIP-DIY, demonstruje, możliwości adaptacji CLIP poprzez modyfikacje

sposobu inferencji tym samym bez konieczności trenowania modelu. Następnie pre-

zentujemy CLIP-DINOiser, metodę, która wzbogaca reprezentacje CLIP na poziomie

pikseli poprzez wykorzystanie komplemetarnych umiejętności lokalizacji obiektów

z reprezentacji uczonych z samonadzorem, takich jak DINO, za pomocą prostego

modułu adaptacyjnego. W tej części pracy pokazujemy również jak poprawić skutecz-

ność segmentacji poprzez starannie dobrane prompty tekstowe, które pozyskujemy

poprzez analizę dużego korpusu danych wykorzystanych do trenowania VLM.

Wykraczając poza adaptację modelu, kolejna część doktoratu prezentuje metodę

do ewaluacji reprezentacji wizualnych w złożonym zadaniu Visual Question An-

swering (VQA). Tak skonstruowany sposób ewaluacji pozwala dogłębnie zrozumieć

skuteczność poszczególnych reprezenetacji wizualnych do zadań rozumowania na

podstawie obrazu. W ostatniej części pracy pokazujemy praktyczne zastosowanie

adaptacji VLM do zadania personalizacji wizualnych podsumowań na przykładzie

problemu na platformie Booking.com, łącząc analizę reprezentacji wizualnej z anali-

zową tekstowych recenzji użytkowników platformy.

Podsumowując, niniejsza praca pokazuje, że modele fundamentalne do reprezen-

tacji obrazu mogą być efektywnie adaptowane do złożonych zadań wymagających

szczegółowego rozumienia obrazu przy minimalnych wymaganiach obliczeniowych

i anotacyjnych. Nasze obserwacje pogłębiają wiedzą dotyczącą rożnych sposobów

reprezentacji obrazu jednocześnie dostarczając praktycznych rozwiązań do adaptacji

modeli fundamentalnych w różnorodnych zastosowaniach.

Słowa kluczowe: metody adaptacji do zadań złożonych, reprezentacje wizualno-
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tekstowe, segmentacja semantyczna z nieograniczonym słownikiem, uczenie niena-

dzorowane/ samonadzorowane
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1. Introduction

1.1. Motivation & Challenges

Vision is a fundamental sensory channel through which humans and other

living beings perceive and understand their environment. A central goal in artificial

intelligence (AI) has been to develop computer vision systems that can match this

remarkable ability to process and interpret visual information [1]. Visual perception

underlies many aspects of intelligent behavior, from recognizing objects and actions

in complex scenes to understanding spatial relationships and temporal dynamics.

Therefore, the goal of emulating human visual capabilities has driven innovation

in computer vision for decades, motivated by its wide potential across society, from

AI systems supporting medical diagnosis [2] to autonomous vehicles enhancing

transportation safety [3] and advanced tools revolutionizing creative industries [4].

From specialized solutions to adaptation of generalist foundation models.

The emergence of foundation models has fundamentally transformed the landscape

of AI. In the context of computer vision, visual foundation models (VFM) translate

raw perceptual information from diverse sources and sensors [5]. This approach

represents the natural evolution of computer vision over the past decade. With

the introduction of ImageNet [6] and supervised pre-training, the field shifted

significantly from traditional task-specific feature engineering [7, 8] towards more

versatile models. These models, trained on large-scale datasets, can be adapted for

various tasks, from image recognition to segmentation [9, 10, 11]. The fundamental

principle of learn-once, adapt-many continues to drive the development of foundation

models.

What advantages do foundation models offer over specialized models for

different tasks? Foundation models offer several compelling advantages over

maintaining multiple specialized models. From an efficiency standpoint, a single

foundation model that can be adapted to various tasks requires significantly fewer

computational resources than separate models for each task. This approach also

enables knowledge transfer across domains, where concepts learned from one task

can benefit the performance on others [12]. Furthermore, foundation models demon-
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strate superior robustness and generalization capabilities since they learn from

diverse data and tasks [13]. Finally, and perhaps most importantly, foundation

models can leverage their broad understanding to tackle novel tasks with minimal

additional training, providing the flexibility that individual specialized models

cannot match [14].

Current landscape of visual foundation models. The current landscape of

visual foundation models is broad, from models for visual understanding [9, 13, 15]

to generative approaches [16, 17]. This thesis focuses on the first group – visual

perception models, where we primarily distinguish three representation paradigms

based on their supervision. One paradigm relies on label supervision, predominantly

through image classification tasks. This methodology has been refined through

seminal datasets such as ImageNet [18], with industry research extending to propri-

etary large-scale labeled collections [19]. The second paradigm employs image-only

self-supervision, where the model learns representations directly from the inherent

structure of visual data. This approach encompasses various methodologies, from

contrastive [20, 21] and non-contrastive learning frameworks [15, 22] to masked

image modeling techniques [23] , which paved the most promising path towards

unsupervised visual representation learning. The third paradigm benefits from lan-

guage supervision, also called Vision-Language Models (VLM), utilizing image-text

pairs widely available on the Internet. Models trained through this approach, such as

CLIP [13] and ALIGN [24], have demonstrated remarkable capabilities in zero-shot

settings. In this thesis, we focus mainly on the last group, as image-text-aligned

representations opened new avenues for research. We believe that VLMs’ adaptation

strategies and an in-depth understanding of their cross-modal space remain largely

unexplored.

Challenges in the adaptation of foundation models to downstream tasks.

Visual foundation models exhibit remarkable generalization capabilities, yet their

adaptation to downstream tasks poses some challenges. The conventional approach of

task-specific fine-tuning with full supervision proves effective but presents significant

limitations. First, fine-tuning large foundation models end-to-end is expensive, as

large models typically require substantial computational resources for training. Some

research efforts address this limitation with parameter-efficient methodologies [25].

However, thesehese achievements may not be as effective for complex downstream

tasks [26]. Dense-level task annotations are particularly expensive to obtain, and

certain domains face inherent constraints in collecting adequate labeled datasets. For

example, in medical imaging, annotations can only be provided by expert radiologists

or pathologists for tumor segmentation [27]. This annotation challenge is further



compounded when models require adaptation to evolving operational conditions, as

each iteration requires traversing the complete cycle from annotation acquisition

to model retraining. It is therefore appealing to consider solutions that reduce the

need for human annotations and task-specific supervision.

Alternatively, one could exploit visual foundation models directly with no mod-

ifications. While for image-level tasks such as classification and retrieval, these

models can typically be adapted with minimal modifications, tasks requiring more

fine-grained understanding expect more tailored solutions. For example, CLIP,

trained with image-level objective, performs poorly on semantic segmentation when

used off-the-shelf [28]. The discrepancy stems from the fundamental mismatch

between the global image-text alignment objective used during pre-training and the

dense prediction requirements of pixel-level understanding tasks.

In this thesis, we focus on the latter approach and investigate how visual foun-

dation models and VLMs, in particular, can be adapted to downstream tasks with

minimal computational effort.

1.2. Thesis Objective & Outline

The goal of this thesis is to explore the adaptability of visual foundation models

for specific downstream applications, with particular emphasis on tasks that go

beyond image classification, requiring visual understanding at a fine-grained level.

Rather than extensively modifying these models, we explore strategies that preserve

their learned representations while extending their capabilities to new contexts. By

using "off-the-shelf" models, we aim to maximally leverage the inherent flexibility of

these visual understanding systems while maintaining their original design. This

approach leads to our central research question: To what extent can off-the-shelf

visual representations from foundation models be leveraged for various downstream

tasks with minimal task-specific supervision? We structure our study around several

specific research questions to systematically address this broader question.

In Chapter 2, we start with an overview of visual foundation models, ana-

lyzing their unique capabilities and limitations. We give particular attention to

Vision-Language Models. Although these models demonstrate remarkable zero-shot

performance, their training focuses primarily on image-level tasks, creating chal-

lenges when applied to tasks that require fine-grained visual understanding. This

limitation is the primary motivation for the first section of this work, in which we

explore novel approaches to overcome these constraints.
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Visual Foundation 
Model

RQ5: Task adaptation 
to real-world scenario [33]

Task: Personalized Image Collection 
Summarization

RQ4: Task adaptation for
model selection and analysis [32]

Task: Visual Question Answering (VQA)

Downstream task adaptation at minimal cost
Task: Open-vocabulary Semantic Segmentation (OVSS)

RQ1: Modified 
inference [29]

RQ2: Leveraging
complementary VFM [30]

RQ3: Leveraging statistics 
from pre-training dataset [31]

Figure 1.2.1. The outline of the thesis. We examine how visual foundation models adapt
to downstream applications beyond image classification. First, we address computational
costs when adapting VLMs for Open-Vocabulary Semantic Segmentation. Next, we explore
the evaluation and selection of optimal VFMs for specific tasks, using Visual Question
Answering as an example. Finally, we investigate VLMs’ capabilities in navigating complex
real-world scenarios like content personalization.

1.2.1. Downstream task adaptation at minimal cost

The first part of this thesis addresses the resource-intensive nature of modifying

large foundation models by investigating adaptation strategies that require minimal

computational training and eliminating the need for manual data annotation.

Research Question 1: Can we adapt visual foundation models for fine-grained

localization tasks without training?

To address the first question, we focus our investigation on open-vocabulary

semantic segmentation (OVSS). Chapter 3 introduces our first contribution, demon-

strating how CLIP’s capabilities can be extended to OVSS tasks through modified

inference strategies rather than model retraining. Our approach, CLIP-DIY, in-

troduces a multi-scale architecture that uses CLIP’s classification abilities across

different spatial resolutions. We enhance segmentation accuracy by incorporating

foreground/background separation scores derived from unsupervised object local-

ization techniques. Notably, CLIP-DIY achieves this without requiring additional

training or manual annotations, instead building upon existing unsupervised lo-



calization methods. Our method yields competing results on classical semantic

segmentation benchmarks compared to methods requiring training.

Chapter 3 is based on the publication "CLIP-DIY: CLIP Dense Inference Yields

open-vocabulary semantic segmentation for free" by Monika Wysoczańska, Michael

Ramamonjisoa, Tomasz Trzciński and Oriane Simeoni presented at IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV) 2024.

Our CLIP-DIY approach combines CLIP with an unsupervised saliency detection

method, which is built upon DINO, a self-supervised learning (SSL) foundation model

demonstrating strong object localization capabilities without requiring fine-grained

supervision. The successful integration in CLIP-DIY of these complementary ap-

proaches—combining vision-language modeling (CLIP) with self-supervised learning

—inspired us to further investigate the potential synergies between these two distinct

paradigms.

Research Question 2: Can we leverage the complementarity of different visual

representations for improved downstream adaptation?

In our next contribution, motivated by the observation that image-text-aligned

and self-supervised visual representations exhibit complementary capabilities, we

propose CLIP-DINOiser, a method which takes the best of both worlds. Our approach

enhances dense CLIP representations by incorporating DINO’s self-supervised

localization capabilities, eliminating the need for task-specific annotations. Cru-

cially, we demonstrate that these localization priors from DINO can be directly

integrated into CLIP’s representation space, avoiding the computational overhead of

running two large models. This is achieved through a lightweight adaptation module

trained with DINO’s supervision while preserving CLIP’s original representations.

CLIP-DINOiser achieves state-of-the-art results on challenging and fine-grained

benchmarks while maintaining minimal computational requirements: it needs only

a single CLIP forward pass and two lightweight modules during inference, with no

additional supervision or memory overhead.

Chapter 4 is based on the publication "CLIP-DINOiser: Teaching CLIP a few DINO

tricks for open-vocabulary semantic segmentation" by Monika Wysoczanska, Oriane

Simeoni, Michael Ramamonjisoa, Andrei Bursuc, Tomasz Trzcinski and Patrick

Perez presented at the European Conference on Computer Vision (ECCV) 2024.

Our work on CLIP-DINOiser revealed that text prompt engineering plays a

crucial role in open-vocabulary semantic segmentation and open-vocabulary tasks



in general. We noticed that a good set of textual prompts can drastically improve

a concept’s segmentation performance, which leads us to our next research question.

Research Question 3: How can we leverage models’ pre-training data statistics for

improved downstream performance?

To address this question, we conduct a deeper investigation into the nuances

of open-vocabulary semantic segmentation. We discover that the performance of

VLM-based semantic segmentation is highly sensitive to the choice of textual prompts

at test time. Specifically, we observe that segmentation accuracy for a given con-

cept can be substantially improved by introducing carefully selected contrasting

concepts—a phenomenon that aligns with CLIP’s contrastive learning foundation.

In our next contribution (Chapter 5), we explore this dynamic by analyzing the fre-

quency distribution of target dataset concepts within CLIP’s pre-training data. Based

on these insights, we develop two automated approaches for generating effective

contrasting concepts at test time: one utilizing an external model and another

leveraging statistical patterns from the VLM’s pre-training dataset. In addition, we

identify limitations in current OVSS evaluation benchmarks, leading us to propose

a new evaluation framework that better reflects real-world challenges.

Chapter 5 is based on a work "Test-time Contrastive Concepts for Open-world

Semantic Segmentation with Vision-Language Models" by Monika Wysoczanska,

Antonin Vobecky, Amaia Cardiel, Tomasz Trzcinski, Renaud Marlet, Andrei Bursuc,

Oriane Simeoni. The work is currently under review for Transactions on Machine

Learning Research.

1.2.2. Task adaptation for model selection and analysis

In the next part of the thesis, we will examine task adaptation from a different

perspective. As we explore visual representations throughout this thesis, a natural

question arises.

Research Question 4: How to determine which visual foundation model is the best

for specific downstream tasks?

In our next contribution, detailed in Chapter 6, we explore an alternative per-

spective on task adaptation. When visual representations are used off-the-shelf

without modification, the process of task adaptation can serve as a framework for

evaluation. By utilizing unmodified visual representations, one can isolate and

assess their quality, as any performance gaps directly reflect the representation’s

encoded properties. This approach establishes a standardized testing environment

where different visual models can be compared under identical downstream con-

ditions, effectively revealing which aspects are naturally embedded within each



representation. Building on this insight, we propose using task adaptation as a

systematic protocol to assess different visual representations. To thoroughly test

this approach, we focus on visual reasoning—a complex task that requires a detailed

and high-level understanding of a visual scene. Specifically, we introduce a protocol

to evaluate off-the-shelf visual representations for Visual Question Answering (VQA).

To facilitate the comparison and integration of various visual representations, we

design a universal reasoning module with a flexible modification of input represen-

tation sizes to allow for fair studies. This evaluation framework allows us to study

the differences between various visual representations and determine which is most

suitable for the selected task. Taking VQA as an exemplary task, we make several

findings that can further foster the development of stronger visual representations.

Chapter 6 is based on a work "Towards unsupervised visual reasoning: Do off-the-shelf

features know how to reason? by Monika Wysoczańska, Tom Monnier, Tomasz Trz-

ciński, David Picard presented first at NeurIPS 2022 Workshop: Self-Supervised

Learning - Theory and Practice & accepted in a full format for IEEE Access (2024).

1.2.3. Task adaptation to real-world scenarios

In our investigations so far, we have demonstrated the adaptability of visual foun-

dation models across different downstream tasks, reducing both human annotation

requirements and computational overhead. We now turn our attention to a more

ambitious challenge: the real world. The final part of this thesis explores whether

visual foundation models can successfully navigate complex real-world scenarios.

Research Question 5: Can we adapt VLM’s representation to real-world challenges,

such as content personalization?

Content personalization is one of the representative challenges in real-world

applications, particularly for digital platforms. Contemporary web services must

deliver content tailored to individual user preferences, a capability that extends

beyond academic benchmarks to directly influence user experience. This requirement

for customized content presentation has emerged as a fundamental determinant

of user engagement and satisfaction across digital ecosystems. As users increas-

ingly expect interfaces and recommendations that reflect their specific interests

and behavioral patterns, the ability to adapt content delivery becomes essential.

Chapter 7 discusses some practical aspects of adapting a VLM to a personalization

problem of summarizing large image collections. While traditional image collection

summarization task aims to create concise visual summaries through carefully

selected subsets, web platforms face an additional challenge: different users have

different preferences and priorities when viewing the same content. This challenge is



particularly relevant for Booking.com, where it effectively presents property previews

that match users’ specific interests and directly impact their decision-making process.

We address this by developing CrossSummarizer, a method that personalizes hotel

visual summaries by analyzing textual reviews from previous travelers’ experiences

to identify key aspects that matter to particular groups of users. In our approach,

we employ a VLM to establish connections between visual content and textual user

feedback. As a result, our cross-modal strategy creates more relevant and personal-

ized visual summaries without requiring additional manual annotations. Through

comprehensive evaluation, including human perceptual studies, we demonstrate

that CrossSummarizer significantly outperforms both non-personalized approaches

and baseline clustering-based methods.

Chapter 7 is based on a work "Tell me what is good about this property – leverag-

ing reviews for segment-personalized image collection summarization" by Monika

Wysoczańska, Moran Beladev, Karen Lastmann Assaraf, Fengjun Wang, Ofri Klein-

feld, Gil Amsalem, Hadas Harush Boker presented at AAAI 2024.

Chapter 8 concludes this thesis by summarizing contributions and giving an outlook

of open problems in task adaptation of visual foundation models.

1.3. List of contributions

This thesis comprises five first-authored works, four of which were accepted to

peer-reviewed conferences or journals. The following sections describe each work

and delineate the PhD candidate’s contributions.

[29] CLIP-DIY: CLIP Dense Inference Yields open-vocabulary semantic seg-

mentation for free. Monika Wysoczańska, Michael Ramamonjisoa, Tomasz

Trzciński and Oriane Simeoni. Accepted at IEEE/CVF Winter Conference on Appli-

cations of Computer Vision (WACV) 2024. (140 MEiN points)

As the first author, the PhD candidate led all aspects of this work, from the design

of CLIP-DIY to manuscript preparation. Michael Ramamonjisoa and Oriane Simeoni

provided technical guidance and contributed to manuscript preparation. Tomasz

Trzciński provided high-level supervision.

[30] CLIP-DINOiser: Teaching CLIP a few DINO tricks for open-vocabulary

semantic segmentation. Monika Wysoczańska, Oriane Simeoni, Michael Rama-

monjisoa, Andrei Bursuc, Tomasz Trzciński and Patrick Perez. Accepted at European

Conference on Computer Vision (ECCV) 2024. (200 MEiN points)
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As the first author, the PhD candidate led all technical aspects of the work,

including design, implementation of CLIP-DINOiser and experimental validation,

ablation studies, and manuscript writing. Oriane Simeoni participated in the initial

experiments, provided supervision throughout the project, and coordinated the

writing of the paper. Michael Ramamonjisoa and Andrei Bursuc provided technical

guidance and contributed to manuscript preparation. Tomasz Trzciński and Patrick

Perez provided high-level supervision.

[31] Test-time Contrastive Concepts for Open-world Semantic Segmentation

with Vision-Language Models. Monika Wysoczańska, Antonin Vobecky, Amaia

Cardiel, Tomasz Trzciński, Renaud Marlet, Andrei Bursuc, Oriane Simeoni. Under

review for Transactions on Machine Learning Research (TMLR).

The PhD candidate served as the primary investigator, leading all aspects of the

research, including direction setting, problem formulation, methodology develop-

ment, implementation of the two proposed solutions, experimental validation, and

paper writing. Antonin Vobecky supported the experimental validation phase and

contributed to the preparation of the manuscript. Amaia Cardiel provided technical

expertise for one of the two proposed solutions. Tomasz Trzciński provided high-level

supervision. Renaud Marlet provided research supervision and significantly con-

tributed to the manuscript preparation process. Andrei Bursuc provided research

supervision and participated in the manuscript preparation. Oriane Simeoni made

significant contributions to manuscript writing and the design of the technical

solution while providing ongoing project supervision.

[32] Towards unsupervised visual reasoning: Do off-the-shelf features know

how to reason? Monika Wysoczańska, Tom Monnier, Tomasz Trzciński, David

Picard. Accepted at NeurIPS 2022 Workshop: Self-Supervised Learning - Theory

and Practice & IEEE Access (2024). (100 MEiN points)

The PhD candidate led the project’s core development, including conceptualiza-

tion, methodology design, implementation, and experimental validation, as well as

preparation of the initial draft. Tom Monnier contributed to the project’s conceptual

framework and methodology and played a key role in manuscript preparation and

revision. Tomasz Trzciński provided resources and a manuscript review. David Pi-

card provided comprehensive supervision and guidance, contributing to the project’s

conceptualization and methodology, while also providing resources and manuscript

writing.



[33] Tell me what is good about this property – leveraging reviews for segment-

personalized image collection summarization. Monika Wysoczańska, Moran

Beladev, Karen Lastmann Assaraf, Fengjun Wang, Ofri Kleinfeld, Gil Amsalem,

Hadas Harush Boker. 39th Annual AAAI Conference on Artificial Intelligence

(AAAI-IAAI) 2024. (200 MEiN points)

The project was developed during PhD candidate’s research internship at Book-

ing.com. The PhD candidate led the project’s core development, including concep-

tualization, design, and implementation of the CrossSummarizer approach and its

experimental validation, as well as preparation of the entire manuscript and revision.

Moran Beladev provided technical advice and general supervision throughout the

project, as well as contributed to the manuscript preparation and review. The rest of

the team provided technical support and strategic oversight.

1.4. Works not Included in the Dissertation

PhD Candidate, through other collaborations, has co-authored additional works

that are not part of this thesis, including:

1. OVFact: Measuring and Improving Open-Vocabulary Factuality for Long Cap-

tion Models. Monika Wysoczańska, Shyamal Buch, Anurag Arnab, Cordelia

Schmid. Under review for the 63rd Annual Meeting of the Association for Com-

putational Linguistics (ACL) 2025.

2. [34] EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocal-

ization at the City Scale. Jacek Komorowski, Monika Wysoczańska, Tomasz

Trzciński. Robotics and Automation Letters (RA-L) 2022. (200 MEiN points)

3. [35] MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition.

Jacek Komorowski, Monika Wysoczańska, Tomasz Trzciński. International

Joint Conference on Neural Networks (IJCNN) 2021 (140 MEiN points)
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2. Background

In this chapter, we provide background on visual foundation models necessary for

further discussion. We begin in Sec. 2.1 with a non-exhaustive overview of various

visual foundation model architectures, with particular emphasis on two predominant

learning paradigms: self-supervised learning and image-text alignment. Following,

Sec. 2.2 examines selected methodologies for adapting these foundation models to

downstream tasks, highlighting key strategies that maximize their utility across

various application domains.

2.1. Visual Foundation Models

Pre-training robust visual backbones is fundamental to downstream computer

vision tasks. The broad literature on visual representation learning can be catego-

rized into three main groups, differentiated by their supervision paradigms, which

we discuss in detail in the following.

2.1.1. Label supervision

Pre-training on large-scale human-labeled datasets such as ImageNet [6] and

ImageNet21K [18] has become a standard approach for developing transferable vi-

sual representations. The core idea is to map images to discrete labels representing

visual concepts. The availability of such large-scale human-labeled datasets has

catalyzed significant architectural innovations, including AlexNet [9], ResNet [36],

Vision Transformer [37], and Swin Transformer [38], and thus label supervision

serves as the experimental foundation for contemporary vision backbones. These

supervised representations have enabled advances across diverse computer vision

tasks, from classification and object detection/segmentation to visual question an-

swering, image captioning, and video action recognition, which adopted ImageNet

pretraining and pre-trained backbones in their pipelines. However, the effectiveness

of such representations remains bounded by the amount of human-annotated data,

which is expensive to obtain, and annotations themselves can introduce unnecessary

biases.

26



2.1.2. Image-only self-supervision

Motivated by the aforementioned limitations of label supervision, a substantial

body of work explores image-only self-supervised learning methods for visual repre-

sentation learning. These techniques derive supervision signals intrinsically from

the images themselves. We can divide them into masked image modeling [23, 39],

contrastive learning-based approaches [40, 20], and non-contrastive learning frame-

works [22, 41, 15, 42].

Masked Image Modeling (MIM) refers to a distinctive paradigm in self- supervised

visual representation learning characterized by its reconstruction-based approach

which was directly inspired by achievements in Natural Language Processing (NLP),

i.e. BERT [43]. MIM methods explicitly mask portions of input images and train

models to predict the masked content. The specific masking strategy significantly

impacts the representation power, with techniques such as block-wise masking and

attention-guided masking designed to create more challenging objectives that en-

courage richer feature learning for dense prediction tasks. The Masked Autoencoder

(MAE) [23] is one of the pioneering works in adopting the MIM approach in the

visual domain. MAE is an encoder-decoder architecture that processes partially

masked images to reconstruct the original, unmasked content. This reconstruction

task compels the model to develop representations capturing the underlying image

structure. Alternatively, BEiT [39] and iBOT [44] predict discrete visual tokens

corresponding to masked patches rather than pixel values.

Contrastive methods develop representations by creating positive image pairs

through augmentations and employing a loss function that maximizes their sim-

ilarity while minimizing similarity to other samples. The implementation of this

approach is a softmax-based classifier distinguishing the positive pair among multi-

ple negative pairs. To learn general features, contrastive implementation requires

comparing features from a large number of images simultaneously. To achieve

this goal, memory bank approaches [45] store features from previous epochs but

face scalability limitations. Momentum contrast (MoCo) [20] maintains consistency

through an auxiliary network that computes an exponential moving average of the

main network’s parameters. Later, MoCov2 [40] utilize examples from the current

mini-batch as positive and negative pairs.

Non-contrastive methods share the fundamental goal of aligning representations

from different transformations of the same input with contrastive methods. However,

they distinctively eliminate the need for negative examples from the learning process.



This approach requires specific strategies to prevent representation collapse, where

the model outputs identical representations regardless of input.

BYOL [22] addresses collapse through exponential moving average (EMA) for

one backbone and asymmetric projection heads. SimSiam [46] later demonstrated

that, while EMA provides minimal benefits, projection head asymmetry is critical to

performance.

Perhaps the most well-known non-contrastive method, DINO [15] frames the

representation learning problem as knowledge distillation [47] between two image

encoders, a teacher and a student. The framework processes two distinct random

transformations of a source image through parallel student and teacher networks.

Although these networks share an identical architecture, they maintain separate

parameters. The training process is as follows. First, student and teacher networks

take different views of the same image and produce K-dimensional feature vectors.

The output of the teacher network is first centered using a batch-computed mean

value. Then outputs of both networks are normalized via temperature-controlled

softmax operations across the feature dimension. Next, cross-entropy loss quantifies

the similarity between these normalized representations, and the gradients are

only propagated through the student network while the teacher network is updated

with an exponential moving average (EMA) of the student’s network parameters. A

follow-up DINOv2 [48] further improves DINO by integrating MIM in embedding

space (iBOT [44]) and scaling the training dataset. A particularly important property

of DINO and its successors [48, 49] is that the proposed training methodology paired

with transformer architecture results in patch-level visual representations that

contain explicit information about the semantic layout of a scene without explicit

supervision.

In Chapter 3 and Chapter 4, we discuss how emergent localization properties of

DINO can be leveraged for other tasks.

2.1.3. Language supervision

Natural language provides a more nuanced supervisory signal than traditional

closed-set class labels. That is why contrastive language-image pre-training (CLIP)

directly utilizes alt-text for learning transferable visual representations [13] col-

lected at scale from the Internet. Models trained through this approach — includ-

ing ALIGN [24] — demonstrate strong zero-shot image classification transfer and

cross-modal retrieval capabilities by projecting images and text into a unified em-

bedding space.

CLIP model consists of two parallel encoders (presented in Fig. 2.1.1): an image en-

coder (typically a ViT [37] or ResNet [36]) and a text encoder (typically a Transformer



Figure 2.1.1. Image-text alignment via contrastive learning. Source [13].

model [50]). During training, a batch of pairs of images and their corresponding text

descriptions are passed through their respective encoders to obtain embeddings. The

embeddings are then normalized to the unit sphere to calculate cosine similarities

between all image-text pairs within a batch. Finally, the symmetric cross-entropy

loss encourages matching image-text pairs to have high similarity while pushing

non-matching pairs apart in both directions ( image-to-text and text-to-image).

CLIP enables zero-shot image classification by reformulating classification as

a retrieval problem in the image-text-aligned space, thus inherently supporting

zero-shot image-text retrieval. Beyond these applications, the aligned multimodal

embedding space facilitates open-vocabulary extension for traditional vision tasks,

inspiring numerous developments in open-vocabulary object detection and segmen-

tation [51, 52, 53].

Data constitutes an essential part of the CLIP training recipe. Original CLIP [13]

utilized 400M image-text pairs sourced from web mining, whereas ALIGN employed a

proprietary corpus comprising 1.8B image-text pairs. While these extensive datasets

remain inaccessible to the public, and the computational demands for training such

models are substantial, the research community tries to reproduce and improve

on the initial efforts [54]. For example, MetaCLIP [55] extracts a balanced subset

from a raw data collection by leveraging metadata (derived from CLIP’s concepts).

DFN [56] learns a data filtering network to induce the correct subset of large-scale

noisy datasets.

Other improvements over the original CLIP include a modified objective function,

specifically SigLIP [57] uses a simple pairwise sigmoid loss for image-text pretraining,

which operates on image-text pairs only and does not require a global view of the

pairwise similarities for normalization, yielding the training more efficient.



2.1.4. Hybrid approaches

Recent work also sought to produce image-text aligned representations that

leverage SSL pretraining methods to make CLIP-like training more efficient [58] or

to produce better patch features [59, 60, 61, 62]. In later sections, we will study in

depth the benefits of combining multiple approaches to tackle fine-grained tasks

that these methods were not necessarily trained for.

2.2. Downstream task adaptation strategies

The emergence of visual foundation models has led to significant interest in the

development of efficient strategies to adapt these models to downstream tasks. In

this section, we discuss some of the adaptation strategies, from full fine-tuning to

more parameter-efficient methods and zero-shot strategies.

2.2.1. Dataset adaptation

The conventional approach for adapting foundation models involves fine-tuning

all model parameters on task-specific data. This technique has demonstrated remark-

able success across various vision tasks [13, 63]. However, as foundation models

continue to grow in size, full fine-tuning becomes increasingly computationally

expensive and requires substantial task-specific annotations [5]. This approach also

faces challenges with catastrophic forgetting, where the adaptation process can

degrade the model’s original capabilities [64].

2.2.2. Parameter-Efficient Fine-tuning

Parameter-efficient adaptation methods have gained prominence in addressing

the computational limitations of full fine-tuning. These approaches modify only

a small subset of parameters while keeping the majority of the foundation model

frozen. [65] introduced adapter modules — small bottleneck layers inserted between

pre-trained transformer blocks. Similar approaches have been applied in vision

models [66, 67], demonstrating competitive performance with full fine-tuning while

updating only 1-5% of parameters. LoRA [25] decomposes weight updates into

low-rank matrices, significantly reducing the number of trainable parameters. This

approach has proven effective for visual foundation models by targeting specific

weight matrices within the architecture. Visual prompt tuning [68, 69] prepends

trainable tokens to the input sequence. These learnable prompts guide the model

toward task-specific behavior without modifying its internal parameters.
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2.2.3. Feature Extraction and Linear Probing

A simpler adaptation strategy treats a foundation model as a fixed feature ex-

tractor, using its representations as input to task-specific heads [70, 71]. Linear

probing—training a linear classifier on frozen features—has become a standard eval-

uation protocol for visual representations [40, 13] due to its simplicity and flexibility

to apply to various representations. Linear probing always requires downstream

task annotations.

2.2.4. Zero-shot and Few-shot Adaptation

Vision-Language Models, as discussed in Sec. 2.1.3, have enabled zero-shot adap-

tation through their aligned image-text representations. CLIP [13] pioneered this

approach by framing downstream tasks as text-conditioned classification problems.

Subsequent work has extended zero-shot capabilities to object detection [52, 72],

segmentation [28, 51], and other structured prediction tasks. Few-shot adaptation

strategies further refine zero-shot predictions using minimal labeled examples [73].

These methods leverage the foundation model’s generalization capabilities while

incorporating task-specific information from a small set of examples.

2.2.5. Adaptation for Dense Prediction Tasks

Dense prediction tasks such as semantic segmentation and object detection

present unique challenges for foundation model adaptation due to their requirement

for spatially aware features. Linear probing – extended to patch-level probing –

can be considered one of the strategies to adapt visual features to some of the

dense tasks by classifying patch-level representations within a model. This typically

means probing features from layers just before pooling layers for convolution-based

backbones, such as ResNet [36], or patch features from the last transformer blocks

within ViT [37]. Linear probing, however, lacks task-specific mechanisms that can

be important for downstream performance, thus not fully exploiting the abilities

of visual representations to address dense tasks. Additionally, the linear probing

strategy can only be used with full supervision; therefore, it always requires fully

annotated datasets.

Decoder-based approaches attach task-specific decoders to the foundation model

encoder, often incorporating multi-scale features [51, 52, 53, 74]. While effective,

they typically require substantial task-specific training.

For segmentation tasks, mask-based strategies [75, 28] leverage foundation

models to classify mask proposals, enabling open-vocabulary segmentation without

direct dense supervision. We give a more detailed overview of the related work for



Figure 2.2.1. LLaVa 1.5 architecture - a generic framework for MLLMs. Source [82].

adapting CLIP to open-vocabulary semantic segmentation in the later sections of

this thesis (Sec. 3.2.1).

2.2.6. Multimodal Adaptation

Finally, visual foundation models have become major building blocks for recent

large Multimodal Large Language Models (MLLMs). Flamingo [76], BLIP2 [77],

PaLI [78] and LLaVa [79] were among the first architectures to integrate visual

understanding with language capabilities for complex reasoning tasks, while be-

ing prototypes of currently strongest reasoning models, including Gemini [80] or

GPT4v [81].

LLaVA introduces a minimalist architectural framework, as illustrated in Fig. 2.2.1,

comprising a frozen CLIP image encoder for visual representation extraction coupled

with a streamlined adaptation mechanism implemented as a Multi-Layer Percep-

tron (MLP). This adaptation layer facilitates integration with the pre-trained Large

Language Model, specifically Vicuna 1.5 [83]. A distinguishing architectural element

across MLLMs is the connector module design—LLaVA employs a relatively simple

MLP projection, whereas alternative approaches such as BLIP2 [77] implement

more sophisticated structures like the Querying Transformer.

The methodological training protocol follows a two-phase procedure: (1) connector

layer pre-training utilizing image-text pairs to establish cross-modal alignment,

followed by (2) instruction tuning—a specialized fine-tuning regimen conducted

on a corpus of image-instruction-response triplets. This latter phase enables the

model to interpret natural language directives and generate contextually appropri-

ate responses. Instruction tuning constitutes a critical transformation mechanism,

converting foundation models from generalized predictive systems into interactive

assistive frameworks with user-oriented interface capabilities. Through conversa-

tional prompting methodologies, these models demonstrate proficiency across diverse



visual reasoning tasks, including Visual Question Answering and Image Captioning

functionalities.

Recently, [84] presents a comprehensive analysis of design and training considera-

tions for MLLMs. Their work proposes utilizing MLLMs as an evaluation framework

for comparing visual representations, offering an alternative to conventional bench-

marks. In Chapter 6, we similarly advocate for Visual Question Answering as an

assessment protocol for visual representations, albeit employing a significantly less

complex adaptation module, as our initial studies date before the rise of open-source

MLLMs.



3. Task Adaptation through Modified

Inference

In the previous chapter, we examined the capabilities of Vision- Language Mod-

els. These models, particularly through text alignment, demonstrate remarkable

zero-shot image recognition capabilities. CLIP’s emergence has pioneered new re-

search directions in open-vocabulary tasks, including detection and semantic seg-

mentation. The term open-vocabulary marks a separation from traditional closed-set

solutions, which are constrained to finite class sets. Instead, through CLIP’s zero-shot

recognition of novel concepts, we can now develop methods that operate on unre-

stricted class vocabularies.

CLIP-like models, however, face a significant limitation: their patch-level repre-

sentations exhibit weak localization properties [28]. This constraint makes VLMs

unsuitable for dense prediction tasks, such as semantic segmentation, without

substantial architectural modifications.

This chapter presents our first contribution, demonstrating that CLIP can be

adapted for pixel-level tasks with minimal adaptation cost of training and task-specific

annotations through a simple modification of its inference mechanism. We explore

this approach in the context of open-vocabulary semantic segmentation — an exten-

sion of semantic segmentation that addresses a fundamental computer vision chal-

lenge in an open-world setting. We introduce CLIP-DIY, a method that achieves this

adaptation without requiring additional training or annotations, instead leveraging

existing unsupervised object localization techniques. CLIP-DIY employs a multi-scale

approach that directly utilizes CLIP’s classification capabilities on varying patch

sizes, aggregating these decisions into a unified map. The segmentation is further

refined using foreground/background scores derived from an unsupervised object

localization method. Notably, our approach achieves competitive results on standard

semantic segmentation datasets when compared to methods that require explicit

training.
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Figure 3.1.1. Simple and accurate semantic segmentation for-free using

CLIP-DIY. Our method processes regions of an image separately, in parallel to produce
per-patch-per-class scores, given a set of prompts that can take any length. CLIP-DIY does
not require re-training and can, therefore, immediately adapt to any new vocabulary.

3.1. Introduction

The task of semantic segmentation, which aims at predicting the class of every

pixel in an image, has been widely tackled using fully-supervised approaches [85, 86,

87], which require tedious and, therefore, expensive per-pixel annotations. Moreover,

semantic segmentation has typically been performed with a finite set of classes [88,

89, 90] describing the types of objects that should be discovered in images. However,

using a fixed number of classes is limiting for real-world applications as interesting

object classes may vary in time and per application – having to perform annota-

tion and re-training on new classes is expensive and sub-optimal. In this context,

recent advances in Visual Language Models [54, 76, 24] have paved the way to

open-vocabulary perception. Indeed, VLMs, trained with cheap and widely available

image-text pairs, e.g. captions, offer new possibilities to describe images with a large

and open vocabulary. Using such models can help alleviate both the problem of

supervision and finite vocabulary.

In particular, the popular VLM CLIP [54] has been exploited to perform open- vo-

cabulary perception. While it has high performance on image classification, applying

CLIP on dense tasks is more challenging [28]. In order to improve CLIP segmentation

abilities, different methods have been proposed to modify the architecture [28, 91],



to add new modules [92, 93, 75] or to train new specifically designed models [91, 94]

from scratch. Instead, we propose CLIP-DIY, a new zero-shot open-vocabulary seman-

tic segmentation approach which makes direct use of the high-performance image

classification properties of CLIP, does not need architecture changes or additional

training. In particular, our method applies CLIP to a multi-scale grid of patches and

aggregates the information into a single prediction map.

Moreover, to further improve the quality of the localization of our predicted

maps, we propose with CLIP-DIY to leverage the recent efforts in unsupervised

object localization. This task aims at discovering every object depicted in images in

a class-agnostic fashion and thus without manual annotation. Recent methods [95, 96,

97, 98, 99, 100] achieve impressive localization results by leveraging self-supervised

features [15, 40]. While some methods discover one object per image [95, 96], more

recent ones try to highlight all objects in an image [98, 97, 100]. We therefore propose

to leverage those capabilities in CLIP-DIY, by guiding CLIP predictions with a very

lightweight unsupervised foreground/background strategy which greatly improves

the predictions’ quality.

To summarize, our novel approach CLIP-DIY best leverages the open-world classi-

fication capabilities of CLIP and the high-quality of unsupervised object localization

approaches yielding the following contributions:

• We introduce CLIP-DIY, a novel, simple technique for open-vocabulary semantic

segmentation which does not require additional training or any pixel-level

annotation but instead leverages strong self-supervised features with good

localization properties combined with CLIP.

• Our multi-scale approach, which uses simply CLIP as it was designed –for

image classification– enables CLIP-DIY to produce well-localized predictions.

• We demonstrate that unsupervised foreground/background methods can be

effectively used to provide spatial guidance to CLIP predictions.

• We achieve a new state-of-the-art zero-shot open-vocabulary semantic segmen-

tation on PASCAL VOC dataset and perform on par with the best methods on

COCO.

• We perform an extensive validation of the design of our method and show that

it is robust as it can be directly applied to in-the-wild open-world segmentation.

3.2. Related work

In this section, we discuss previous work related to ours, starting in Sec. 3.2.1

with zero-shot open-vocabulary semantic methods, then following with unsupervised

object localization methods in Sec. 3.2.2. Finally, in Sec. 3.2.3, we focus more specifi-
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cally on works that leverage a combination of self-supervised learned features and

CLIP to perform open-world segmentation.

3.2.1. Zero-shot open-vocabulary semantic segmentation

With the aim to build generalizable models, zero-shot methods for semantic

segmentation [101, 102, 103, 104, 101, 105, 106, 107, 108] propose to extend models

trained in a fully supervised fashion on a set of seen classes to new unseen classes.

Many leverage relationships encoded in pre-trained word embeddings [109, 110] to

discover new unseen concepts. Such methods require annotation for the seen classes

while we aim to use no pixel-level annotation.

Alternatively, open-vocabulary approaches [111] exploit image-text alignment

without needing to pre-define vocabulary. Several [28, 112, 92, 113, 112] build on top

of the popular CLIP [13] model which showed impressive global text-image alignment

properties but lacks localization quality [114]. Using class-agnostic object masks, it

is possible to learn to align the embeddings of selected pixels with text [113, 51, 115],

but at the cost of pixel-level annotations. Without extra supervision, MaskCLIP [28]

alters the last pooling layer of CLIP to produce dense predictions and use them as

pseudo-labels to train a segmentation model, forming MaskCLIP+. Using only image

captions—cheap to acquire and widely available—as supervision, [94, 112, 93, 116]

learn local alignment between image regions and paired text with contrastive objec-

tives. Regions are formed using a learnt hierarchical mechanism [94], cross-attention

based clustering [112], using a clustering head trained with diverse view [93] or

slot-attention [116]. PACL [92] adds an embedder module that learns affinity be-

tween patches and the global text token, TCL [75] builds a new local contrastive

objective which directly aligns captions with pre-selected patches and ViewCO [117]

proposes a multi-view consistent learning approach. CLIPpy [91] proposes to fully

re-train CLIP with a few well-designed modifications to directly obtained denser

features. Alternatively, ReCO [118] builds prototypes of the desired vocabulary

(using CLIP-based retrieval), which are then used for co-segmentation.

Rather than modifying the architecture of CLIP or training a new module specif-

ically designed to densify its outputs, we propose to directly use as is the good

classification ability of the model. Indeed, we perform a dense multi-scale patch

classification. By doing so, our method can easily be adapted to any new dataset or

vocabulary.

3.2.2. Unsupervised object localization

Interestingly, recent works have shown that ViT features trained in a self- su-

pervised fashion [41, 15, 40] on images–with no human-made annotations–have
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Figure 3.2.1. Overview of CLIP-DIY, our two-step pipeline for segmentation map extraction.
We note ΦV and ΦT the CLIP encoders for image and text, respectively. (1) An input image
is partitioned into smaller patches, and each of them is fed indepently to the image encoder,
yielding a vector of per-class similarity to an arbitrary-length vocabulary of classes. (2)
Patches are then aggregated back before upsampling to produce dense similarity maps.
(3) An objectness score obtained by an off-the-shelf foreground-background segmentation
method such as FOUND [100] is used to guide the prediction of the final segmentation.

good localization properties [95, 96]. Such properties have been exploited to tackle

the problem of unsupervised object localization [119, 120], which requires to lo-

calize objects–any object–depicted in images and without any cue. A set of meth-

ods [95, 96, 121, 98, 97] exploit the good correlation properties of the feature and

find an object as the set of patches which highly differs to the other patches. Alterna-

tively [122], exploits the attention mechanisms with different queries and produces

maps that are ranked and filtered and [100] proposes to look for the background

instead of the objects in order to avoid single object discovery and to need priors

about objects. The coarse object localization results obtained using those methods

can be used as pseudo-labels to train large instance or segmentation models in a

class-agnostic fashion [95, 96, 122, 123, 97]. Recent FOUND [100] is a very light

model–a single conv1x1–trained to produce foreground/background segmentation of

good quality. When self-trained FOUND achieves even better results and discovers

more objects per image [95, 97]. In this work, we propose to leverage the good object

localization properties of unsupervised object localization models, which make no

hypotheses about object classes and remain, therefore open. In particular, we take

advantage of the efficiency of FOUND [100] to guide our zero-shot segmentation.



3.2.3. Combining self-supervised features & CLIP

Combining self-supervised learning [15, 20, 40, 23] with VLMs has been previ-

ously explored by different open-vocabulary segmentation methods [118, 91, 124].

Correlation qualities are used to perform co-segmentation [118] when pre-training

properties are directly leveraged to initialize the visual encoder backbone [91, 116].

Related to our work, ZGS [124] builds potential masks using clustering strate-

gies on self-supervised features and assigns them a class. Contrary to all previous

approaches, it explores the task without predefined text prompts. Although ZGS cur-

rently obtains lower results than other baselines on the task, it opens an interesting

direction for future work.

In this work, we do not perform co-segmentation (which expects to know classes

of interest) nor retrain a model from scratch. Instead, we propose to guide CLIP

prediction with an unsupervised foreground/background segmentation method,

which, to the best of our knowledge, has not yet been explored.

3.3. CLIP-DIY

We tackle the problem of open-vocabulary semantic segmentation with no super-

vision. Let us consider a set of queries t j ∈ T formulated in natural language. Our

goal is to localize each query if present in the image, yielding one mask per query, i.e.

a segmentation map. Our approach, summarized in Fig. 3.2.1, consists of two stages.

In Sec. 3.3.1, we describe our first step, where we run our proposed multi-scale dense

inference to obtain coarse semantic maps by running CLIP on image patches at

different scales. Our second step, which we cover in Sec. 3.3.2, consists of refining

the initial segmentation using an off-the-shelf foreground-background extractor.

3.3.1. Dense inference with CLIP

Our method leverages CLIP [13] as a backbone. Contrary to most CLIP-based

approaches for zero-shot semantic segmentation (as discussed in Sec. 3.2.1), we do

not rely on patch tokens within the image encoder. Instead, we leverage CLIP’s

zero-shot capabilities by running the model densely on image partitions. Thus, we

calculate the alignment between each of the multi-scale patches and the considered

textual queries.

Encoding prompts. Given a set of textual queries T , we encode a prompt t j ∈ T

with j ∈ [0, |T |] using CLIP text encoder ΦT(t j) ∈R
d, where d = 512 in CLIP. Following

previous works [75], we formulate a prompt as: a photo of a {t j}. In what follows
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Figure 3.3.1. Multi-scale maps ρs of CLIP-DIY. Our method produces multi-scale pre-
dictions of dense logits that capture information at different levels of granularity. While
the coarsest (s = 0) scale pools global information from the image, finer scales induce more
localized and potentially discover different object classes. While our method can incorporate
as many scales as needed, very fine resolutions such as scale 4 and above do not generate
meaningful information.

we use the notation ΦT(T ) ∈Rd×|T | as the set of encodings of all text queries T . Note

that we always consider a background class, thus we always assume t0 = background.

Multi-scale image partitioning. Given an input image x ∈ RH×W×3, we first re-

shape it into a sequence of 2D patches X = {xi ∈R
P×P×3}i=1..N , where N = +

H
P
,·+

W
P
, and

P×P is the patch size. We then extract visual embeddings ΦV (xi) ∈R
d for each patch.

In practice, since we use a ViT [125] as our visual encoder ΦV , and take the [CLS]

output as our visual embedding ΦV (xi)
1. We can then run the same partitioning for

different scales S using different patch sizes, yielding a set of partitions {Xs}s∈S .

Dense similarities extraction. Given our multi-scale partitions, and a text query

t ∈ T , we build a dense similarity map ρ
t
s for each scale s ∈S , such that:

ρ
t
s =Upsample

H,W

(

⋃

x∈Xs

[ΦV (x)·ΦT(t)]

)

, (3.1)

1 For convolutional network backbones such as Resnet [36], we could use the output of AvgPool.



where
⋃

is a merging operator that puts patches back onto a 2D grid, · denotes

the inner product computed between the visual and text embeddings and Upsample
H,W

is a bilinear up-sampling operator which upsamples its input to the resolution H×W.

The resulting map ρ
t
s ∈R

H×W yields an estimate of the similarity between each

pixel in the input image and a text query t ∈ T . In Fig. 3.3.1 we show aggregated

similarity maps ρs = {ρt
s}t=1..|T | ∈ R

H×W×|T | obtained at different scales. We can see

that while the coarsest scale s = 0 is responsible for pooling global information on

the objects to segment, finer scales s > 1 result in more localized maps.

Having obtained similarity maps ρ
t
s for each text query t ∈ T and each scale s ∈S

we aggregate the multi-scale predictions into a map M t
CLIP

such that:

M t
CLIP =

1

|S|

∑

s∈S

ρ
t
s. (3.2)

3.3.2. Guided segmentation

Finally, we propose to refine the multi-scale segmentation maps M t
CLIP

of Eq. 3.2

using an objectness map produced by an off-the-shelf unsupervised foreground-

background segmentation method [98, 100], noted Θ. As discussed in related work,

such methods exploit self-supervised features, e.g. [15], to discover the pixels likely

depicting objects.

When fed with an image x ∈ RH×W , the foreground-background segmentation

method produces an output Θ(x) ∈ [0,1]H×W with a per-pixel confidence score close

to 1 for a pixel in a foreground object. We use this proxy for objectness estimation

to refine our segmentation masks M t
CLIP

. In particular, we refine M t
CLIP

using the

output of Θ for each text query t ∈ T except for t0 = background, where we take the

complement of Θ(x) following:

M̂ t
=







1−Θ(x) if t = background,

Θ(x) otherwise,
(3.3)

such that similarities with the background class are down-weighted for pixels

deemed as salient by Θ.

Finally, we compute the output of CLIP-DIY as:

M =SoftMax
t∈T

(

M t
CLIP ¹ M̂ t

)

∈R
H×W×|T |, (3.4)

where ¹ denotes the Hadamard product and SoftMax is the softmax operator

computed over text queries. In Fig. 3.3.1 we show how the aggregation of all scales

paired with the guidance of Θ results in accurate object segmentation.
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3.4. Experiments

In this section, we present the experiments conducted to evaluate our method

and justify particular design choices. First, in Sec 3.4.1 we give details about our

experimental setup. In Sec. 3.4.2, we discuss how our method compares against

other open-vocabulary semantic segmentation approaches, both quantitatively and

qualitatively. We then give more insight into our method with a series of ablations

(Sec. 3.4.3), failure mode analysis (Sec. 3.4.4) and finally real open-world evaluation

(Sec. 3.4.5).

3.4.1. Experimental setup

Datasets & metric. We evaluate our method on two common semantic segmen-

tation benchmarks: PASCAL VOC 2012 [88] and COCO [90], comprising of 20 and

80 foreground classes respectively. PASCAL VOC has an additional background

class, and we adopt a unified protocol [94, 75] considering a background class in

all datasets. We evaluate results with the mean Intersection-over-Union (mIoU)

metric. For evaluation, we resize input images to have the shorter side of length 448

following [75].

Implementation details. If not otherwise specified, we use the CLIP ViT-B/32

model OpenCLIP version [54] trained with LAION [126]. The input images are

resized to 224×224, and the patch size is 32×32. We empirically find that running

our model on 3 different scales, i.e. |S | = 3 with patch sizes of P0 = 256,P1 = 128,P2 = 64,

gives the best results for both evaluated datasets. We discuss this later in Sec. 3.4.3.

Baselines. We compare our method with the existing state-of-the-art zero-shot

open-vocabulary methods. In particular, we evaluate against methods, including

self- trained MaskCLIP+ [28], learning grouping strategies: GroupViT [94], Seg-

CLIP [112], ViL-Seg [93], OVSegmentor [116], ViewCo [117] , using class prototypes:

ReCo† [118], text-grounding strategy: TCL [75] and with CLIPpy [91] which uses a

T-5 backbone and improves dense abilities of CLIP. We detail in Tab. 3.4.1 the VLM

backbones used per method, and the if additional training data was. Every method

(except for MaskCLIP) requires training a specific module/model used to get denser

predictions; instead, we use the vanila CLIP model.

A note on fair comparison. Following TCL [75], we use a unified evaluation

protocol corresponding to an open-world scenario where prior access to the target data

before evaluation is not allowed. In particular, we do not consider query expansion, e.g.



Method extra Backbones PASCAL COCO
training Visual Text VOC Object

ReCo† [118] ✓ ViT-L/14* CLIP-ViT-L/14* 25.1 15.7
ViL-Seg [93] ✓ ViT-B/16 37.3 -
MaskCLIP+† [28] ✓ ResNet101 [36] 38.8 20.6
CLIPpy [91] ✓ ViT-B/16 T-5 [127] 52.2 32.0
GroupViT [94] ✓ ViT-S/16 12T 52.3 -
ViewCo [117] ✓ ViT-S/16 12T 52.4 23.5
SegCLIP [112] ✓ ViT-B/16 CLIP-ViT-B/16 52.6 26.5
OVSegmentor [116] ✓ ViT-B/16 BERT-ViT-B/16 53.8 25.1
TCL [75] + PAMR [128] ✓ ViT-B/16 CLIP-ViT-B/16 55.0 31.6
CLIP-DIY (ours) ViT-B/16 CLIP-ViT-B/16 59.0 30.4
CLIP-DIY (ours) ViT-B/32 CLIP-ViT-B/32 59.9 31.0

Table 3.4.1. Zero-shot open-vocabulary segmentation. Comparison of our approach to
the state of the art (under the mIoU metric). While our method does not need any additional
training it performs significantly better than the current SOTA on PASCAL VOC (+4.9) and
performs on par with its competitors on COCO object, ranking 3rd on COCO. We mark with
† results from [75]. All methods are evaluated considering that background is a class of the
dataset. We note with ∗ when more than one backbone was used, we refer here to CLIP-like
backbones. GroupViT and ViewCo use a 12 Transformer layers backbone following [13],
noted 12T.

class name expansion or rephrasing. As discussed in [75], exploring language biases

can greatly improve the overall segmentation performance. However, we only use

the original class names from the compared datasets. We also report best-reported

scores for all methods. It is to be noted that TCL uses a post-processing technique,

namely PAMR [128], while other methods do not.

3.4.2. Results

In this section, we compare our method to previous work both quantitatively and

qualitatively.

Quantitative results. We summarize in Tab. 3.4.1, the comparison of our CLIP-DIY

to baselines. We report results of CLIP-DIY with both CLIP ViT-B/32 and CLIP

ViT-B/16, given that most methods use the latter.

First, comparing our results with the two different backbones, we remark that

better scores are obtained with CLIP ViT-B/32, in which patch inputs are larger and

are, therefore, less expensive at inference time. We believe this could be explained

by an existing upper bound on CLIP accuracy w.r.t the level of granularity; patches

too small might induce noisy classification—as we observed in Fig. 3.3.1.



Method PASCAL VOC COCO

CLIP-DIY 59.9 31.0
w/o multi-scale 56.0 25.9
w/o objectness 24.1 15.5

Table 3.4.2. Ablation studies. We find that while all components are improving the
performance of our method, objectness is particularly critical. Numbers are reported using
a ViT-B/32 backbone.

Compared to baselines, we observe that our method achieves the best mIoU result

on PASCAL VOC dataset and outperforms all previous works by more than 4 mIoU

pts, and such without post-processing. This result is particularly interesting given

that our method does not require dedicated training to improve CLIP segmentation

abilities but instead leverages the unsupervised object localization method.

Moreover, we obtain 31.0 mIoU on COCO when the best-performing method

CLIPpy achieves 32.0, so just 1 mIoU pt better than our approach. We can observe

in Fig.3.4.1 that CLIPpy discovers more queries per image than us, even though its

segmentation outputs appear to be noisier. Such results might suit a better COCO

benchmark and less PASCAL VOC.

Qualitative results. We qualitatively compare here our method with best perform-

ing TCL [75] and CLIPpy [91] in Fig. 3.4.1.

Our method consistently produces better masks with better object boundaries,

which we attribute to the high-quality saliency maps. Moreover, we observe that

CLIP-DIY produces correct semantic results on the foreground objects, with fewer

artifacts than CLIPpy. Our method seems also less sensitive to biases, for instance,

both TCL and CLIPpy hallucinate the sheep class on the grass (on the very left

image) and CLIPpy also predicts aeroplane in the sky (in most left image) and zebra

next to the elephants (middle image in COCO dataset).

3.4.3. Ablations

In this section, we perform ablation studies to validate the individual choices

in the design of CLIP-DIY. First, we study in Tab. 3.4.2 the impact of the different

elements of our method. In particular, we investigate the impact of using a multi-scale

mechanism and leveraging the objectness produced by the foreground/background

segmenter. We notice that by removing our multi-scale scheme, we drop results

by 3.9 and 5.1 mIou pts on Pascal and COCO, respectively, showing the benefit of

considering patches of different sizes. Additionally, the largest drop is observed when

removing the foreground/background saliency guidance, showing the effectiveness
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Figure 3.4.1. Qualitative open-vocabulary segmentation results. We compare our
method against CLIPpy [91] and TCL (with PAMR post-processing) [75]. Our method consis-
tently outperforms two other methods by producing accurate segmentation masks. TCL and
CLIPpy also both suffer from hallucinating classes based on context, such as the aeroplane

and sheep in 1st column, or zebra in 5th column. All pixels annotated in black are from the
background class.

of combining CLIP with the current lightest unsupervised object localization model,

FOUND.

Multi-scale approach. We conduct an ablation study on the scales used in our

multi-scale scheme to generate the predictions. We progressively add inner scales in

Eq. 3.2 and report the resulting accuracy on all datasets. The results, detailed in

Tab. 3.4.3, show an optimum when using three fine scales. Adding more does not

appear to improve results or downgrade them, showing the stability of our method.

Interestingly, we also see that removing information from the global scale greatly

reduces performance on all datasets (-5.7/-3.5 mIoU pts on PASCAL VOC/COCO,

respectively). In Fig. 3.4.2, we visualize the individual contribution of each scale

to our final prediction. As in Fig. 3.3.1, we observe that coarse scales capture the



Scales used PASCAL COCO
0 1 2 3 4 VOC Object

✓ 56.0 25.9
✓ ✓ 58.8 28.7
✓ ✓ ✓ 59.9 31.0
✓ ✓ ✓ ✓ 59.5 29.9
✓ ✓ ✓ ✓ ✓ 59.3 29.4

✓ ✓ ✓ 53.8 26.4

Table 3.4.3. Ablation of our multi-scale approach. To validate our multi-scale design,
we report the results of our method with different sets of scales, by progressively adding
more fine-grained scales. We find empirically that after scale 3, adding more scales gives
similar or worse results. We also report results without the first scale s = 0 (global scale),
which leads to worse results. Numbers are reported using a ViT-B/32 backbone.

Saliency Method w. training PASCAL VOC

FOUND-bkg [100] : 48.4
FOUND [100] ✓ 59.9
CutLER saliency [97] ✓ 55.4
CutLER mask [97] ✓ 50.8

Table 3.4.4. Comparison of different objectness methods used for objectness-guided
fusion. We find that the version of FOUND that was trained in the original paper performs
the best, and therefore keep this method as our objectness guide.

global context, while finer scales capture more local one, such that objects can be

separated.

Foreground segmenters. We compare different foreground-background segmenters

and the overall performance of our method using each one of them. The results, sum-

marized in Tab. 3.4.4, show that our method performs the best when using FOUND,

more specifically, the FOUND model that has been re-trained with self-training in the

original work. We also experiment with CutLER [97], which performs unsupervised

instance segmentation. We use the predicted instance masks or compute a saliency.

In both cases, we obtain slightly worse results. We give more details in Sec. 3.2.2.

3.4.4. Failure cases

Failure cases We qualitatively analyze failure cases of our method by showing a

couple of examples in Fig. 3.4.3. We observe that some of the failures are due to

inaccurate annotations: in (a) bear is only partially annotated, and in (b) a mask

for an elephant is annotated too coarsely. Our method, benefiting from FOUND’s



RGB scale 0

GT scale 1

CLIP-DIY scale 2
chair tv/monitor

Figure 3.4.2. Qualitative ablation study. In the right column we show the results when
progressively adding more scales in the multi-scale approach. Running with 3 scales enables
segmenting most of the chair.

accurate saliency predictions is able to produce better segmentation masks. We also

observe that our method is limited by the quality of the saliency (c, d), which we

comment more on below.

Ambiguities. In the examples (c) and (d) of Fig. 3.4.3, we observe that our method

can fail to segment objects with significant overlap, resulting in ambiguity regarding

the foreground class, which is especially harmful when annotations are too coarse or

incomplete. In (c), only the bench is annotated, while our method segments only the

orange, which would result in a low IoU score. In (d), the opposite behavior occurs,



where CLIP-DIY discovers more classes than the annotated ones. Finally, similarly

to most of the open-vocabulary methods based on CLIP, our method suffers from

sensitivity to text ambiguities. We show more failure cases in Sec. 3.6.2.

GT CLIP-DIY

(a)

(b)

(c)

(d)

bear elephant

vase

orange bench

potted plant

Figure 3.4.3. Failure cases. Our method is not robust in a few cases, such as (a) incomplete
or (b) coarse labeling. Another failure mode of our method is when there is an ambiguity in
the foreground class (c-d).



3.4.5. Our method in the wild

We also test our method in the wild. We randomly download a set of images

and provide textual queries we find most suitable. We show in Fig. 3.1.1 that our

method exhibits off-the-shelf open-world segmentation capabilities, being able to

produce masks for specific prompts. More results, including comparisons against

other methods of in-the-wild open-world segmentation, are presented in Sec. 3.6.2.

3.5. Conclusions

We introduce a new method for open-vocabulary semantic segmentation, namely

CLIP-DIY, which exploits CLIP’s open-vocabulary classification abilities. As opposed

to recent approaches we run CLIP densely at multiple scales to obtain coarse se-

mantic mask proposals. When further guided by the quick fully unsupervised object

localization method FOUND, which estimates foreground saliency, our model obtains

state-of-the-art results on PASCAL VOC and performs on par with baselines on

COCO dataset. Since our method does not require any specific training, it can be

used as an off-the-shelf method for open-world segmentation, and could therefore

serve as a tool to help dataset annotators. While CLIP-DIY already yields competitive

results, we believe future work could make it more diverse and efficient.

3.6. Additional material

3.6.1. Foreground-background segmenters

In this section, we provide more details on the foreground-background segmenters

we use in our work. We consider the two variants of FOUND [100]: we first use

the coarse saliency maps produced without self-training, noted FOUND-bkg in the

paper, which corresponds to the set of similar pixels to the least salient background

seed pixel in the self-supervised feature space. We also use the simple conv1x1 model,

named FOUND, in the main paper, which is self-trained on only 10,553 images [129]

and produces more pixel-aligned results. We refer the reader to the original paper

for more details.

We also experiment with the state-of-the-art unsupervised panoptic segmentation

method CutLER [97]. It produces a single mask per discovered object in a scene. We

test CutLER in two different setups. First, since our method was designed to take

one saliency map for the whole image we adapt the output of CutLER to obtain a

saliency map as follows. We run CutLER per image obtaining the binary instance
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masks {ζn ∈ [0,1]H×W }n=1..N , with N the total number of output binary masks. We

also extract the confidence scores corresponding to the masks {σn ∈ R}n=1..N . Note

that the output masks are of the size of the input image. We then filter the masks

and discard those with a confidence score σn < 0.3 similar to the value on the official

CutLER repository 2. We then aggregate the remaining masks into a saliency map

MCUT with:

MCUT =
1

Z

∑

n∈N

σnζn, where

Z =max
px

(

∑

n∈N

σnζn

)

∈R,

(3.5)

such that MCUT ∈RH×W is a normalized 2D-mask with its maximum value being 1.

Second, for a fair comparison, we also use CutLER off-the-shelf as a mask ex-

tractor. We use previously described masks ζn ∈ [0,1]H×W , and with each one of them,

we create an image In mask where the background is masked out. Each masked

image In is then fed separately to CLIP to obtain a CLIP prediction. We denote this

approach as CutLER mask in Tab. 3.4.4.

Overall, CLIP-DIY achieves the best performances with the light self-trained

FOUND, as discussed in the main paper.

3.6.2. More qualitative results

We provide in this section more qualitative examples produced with CLIP-DIY.

We first compare our method against other state-of-the-art approaches in Fig. 3.6.1

for PASCAL VOC and Fig. 3.6.2 for COCO.

In Fig. 3.6.3, we then present more in-the-wild examples and conclude this section

by discussing failure cases and limitations of our method in detail.

Comparisons

We first present comparisons with other methods on the two segmentation

datasets used in this work, namely PASCAL VOC [88] and COCO Object [90].

PASCAL VOC Fig. 3.6.1 shows randomly sampled images from PASCAL VOC

dataset and the results of CLIP-DIY and our baselines. Our method produces accurate

masks for all of the images, and the result of CLIP-DIY is the closest to the ground

truth compared to other methods. We observe that the two other methods, TCL [75]

and CLIPpy [91], produce masks that are too coarse, with the latter frequently even

assigning most of the image to one segment.

2 https://github.com/facebookresearch/CutLER/

https://github.com/facebookresearch/CutLER/
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Figure 3.6.1. Qualitative segmentation results on PASCAL VOC. We compare our
method against CLIPpy [91] and TCL (with PAMR post-processing) [75]. Our method consis-
tently outperforms two other methods by producing accurate segmentation masks.

COCO Object Fig. 3.6.2 shows the examples from COCO dataset. While generat-

ing masks with mostly the correct category, TCL produces very noisy boundaries

compared to CLIP-DIY. CLIPpy not only generates noisy masks but also produces a

lot of clutter, assigning wrong labels to background pixels.

In-the-wild examples

We provide more in-the-wild examples to showcase the open-vocabulary abili-

ties of our method. In Fig. 3.6.3, we present a couple of randomly mined images

from the Web in comparison with TCL [75]. Both of the methods correctly assign

queries to proper segments, even very specific types of objects, such as traditional

dishes e.g. polish dumplings and pasteis de nata; monuments Eiffel tower and

Sacré coeur. Moreover, thanks to the CLIP backbone, both methods can distinguish
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Figure 3.6.2. Qualitative segmentation results on COCO. We compare our method
against CLIPpy [91] and TCL [75] (with PAMR [128] post-processing) [75]. Our method
consistently outperforms two other methods by producing accurate segmentation masks.
TCL and CLIPpy also both suffer from hallucinating or producing noisy masks.

between different colours, e.g. grey elephant against pink elephant. However, we

observe that the quality of masks produced by TCL again is not as detailed as ours.

Note that TCL uses the PAMR post-processing technique; thus, we would expect the

generated masks to be more precise.

Failure cases

We analyze failure cases of our method in Fig. 3.6.4. We can see that CLIP-DIY

suffers from producing incomplete masks column (a) and missing objects (c). This

happens due to the saliency produced by the foreground-background segmenter,

which, in the case of complex, multi-object scenes, focuses on certain aspects of a



R
G

B
T

C
L

[7
5]

C
L
I
P
-
D
I
Y

metal scissors

thread

apple

polish dumplings
Eiffel tower Sacré coeur

R
G

B
T

C
L

[7
5]

C
L
I
P
-
D
I
Y

pasteis de nata

coffee

grey elephant

pink elephant

scrabble paper clip

rubber stamp pencil

Figure 3.6.3. More examples of in-the-wild open-world segmentation. We compare
the segmentation produced by our method with the results of TCL [75] (with PAMR [128]
post-processing). While both methods are able to detect and locate each class, including dis-
tinguishing between pink elephant and grey elephant, TCL largely over-segments objects.

scene. Moreover, our method has limited performance in the case of overlapping

objects, such as dog and chair in column (d). Finally, we find more failures due to

inaccurate annotations, such as the one in column (b), where bowl is misclassified

by what is inside, i.e. carrot.
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Figure 3.6.4. Failure cases. We show examples from both datasets. Our method at times
produces incomplete masks when saliency focuses only on parts of the scene such as in (a)
and (c), ambiguous classification in (b), as well confusion when classes overlap (d).

Table 3.6.1. CLIP-DIY zero-shot performance (IoU) on the 21 classes from Pascal VOC. The

background class is denoted as .

87.6 78.1 33.8 77.5 62.6 65.4 71.4 66.0 81.6 16.1 75.2 20.0 78.5 69.8 63.8 56.6 37.3 79.9 25.0 68.3 37.5

Detailed quantitative results

We present detailed quantitative results on PASCAL VOC in Tab. 3.6.1 for each

class. We observe that the worst performance is obtained on classes which are

typically only partially visible in images, such as furniture (chair, sofa and table).

This is mostly due to the decreased performance of the saliency detector in those

classes, which is biased towards object-centric images. The high performance (87.6

IoU) for the background class confirms the efficacy of our saliency detector.



4. Leveraging Complementary Visual

Foundation Model

In the previous chapter, we demonstrated a task adaptation strategy through mod-

ified inference, exemplified by CLIP-DIY. While this approach eliminates the need for

training and human annotations, its effectiveness is limited by two key constraints:

the fixed partitioning mechanism and the method’s dependency on foreground/back-

ground segmentation for localization. These limitations make CLIP-DIY suboptimal

for complex scenes containing multiple objects and challenging backgrounds.

Our use of the unsupervised saliency detector FOUND [100] led us to reconsider

how external models might enhance CLIP’s patch-level representations. FOUND,

built upon the self-supervised foundation model DINO (discussed in Sec. 2.1.2),

demonstrates robust object localization capabilities without requiring fine-grained

supervision. The successful integration of these complementary approaches – vision-

language modeling (CLIP) with self-supervised learning (FOUND and DINO) –

suggested promising opportunities for hybrid solutions.

This chapter introduces a novel approach to unsupervised downstream task

adaptation through the employment of complementary visual foundation models. Our

method, CLIP-DINOiser, leverages the complementary strengths of image-text-aligned

and self-supervised visual representations to enhance performance in open- vocabu-

lary semantic segmentation. A key innovation lies in our ability to directly integrate

DINO’s localization priors into CLIP’s representation space, thus avoiding the compu-

tational burden of running two large models in parallel. This integration is achieved

through a lightweight adaptation module trained with DINO’s supervision, while

preserving CLIP’s original representations. CLIP-DINOiser achieves state-of-the-art

performance on challenging and fine-grained benchmarks while maintaining mini-

mal computational requirements. The method requires only a single CLIP forward

pass and two lightweight modules during inference, operating without additional

supervision or memory overhead.
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l Irrelevant prompts predicted: aeroplane, cat, cow, sheep, sofa, motorbike, dogl
Figure 4.1.1. Examples of open-vocabulary semantic segmentation results obtained
with our method CLIP-DINOiser on ‘in-the-wild’ images vs. those of MaskCLIP [28]. Our
method improves MaskCLIP features with a smart pooling strategy, which does not alter the

original open-vocabulary properties. We use self-supervised DINO [15] as a guide to teach

CLIP [54] to produce DINO-like localization features through two light convolutional layers.
Our method, which achieves state-of-the-art results, only requires a single forward pass
through CLIP model and our two layers. In addition to the correct prompts (light grey row),
we list the irrelevant prompts predicted (in yellow) that we query in all images shown here.

4.1. Introduction

Semantic segmentation is a key visual perception task for many real-world sys-

tems, e.g., self-driving cars and industrial robots. Typically tackled in a dataset-

oriented manner, best methods require a training dataset which is manually anno-

tated for a specific and finite set of classes. The advent of powerful Vision-Language

Models [13, 24, 57] is stimulating a shift from a closed-vocabulary paradigm to an

open-world one. Such models are trained with a simple but scalable objective: to

align pairs of image and coarse text captions that can be obtained in large amounts

with limited manual supervision. VLMs excel at associating global image content

with arbitrary text inputs with remarkable generalization capabilities [130, 131],

but struggle to provide dense open-vocabulary features [28, 51]. Obtaining such an

alignment between pixels and language can lead to open-vocabulary extensions for

multiple other modalities, such as point clouds [132, 133, 134, 135], 3D scenes [136],

3D shapes [137], radiance fields [138], inter-modality alignment [139, 132], with

multiple potential applications for which the construction of training datasets is

even more challenging and where CLIP-derived models show promising results.

Different strategies have been recently proposed towards improving CLIP’s

patch-level feature extraction abilities by modifying the original CLIP architecture



for dense pooling and retraining [94, 75, 91, 116, 92] or finetuning on an annotated

segmentation dataset with pre-defined classes [93, 28]. The former requires long

training and/or large collections of annotated data, while the latter leads to an

alteration of the vision-language associations of the CLIP features. An alternative

line of approaches freezes the CLIP encoder and directly densifies its features with

different heuristics, often with multiple forward passes [138, 137, 132, 29, 118, 140],

but are less practical due to the extensive computational overhead. MaskCLIP [28]

arises as a computationally efficient dense CLIP extractor. It converts CLIP’s global

self-attention layer into a convolutional one to produce patch features with original

vision-language qualities. If such features are local, they appear to be too noisy for

high-quality segmentation mask extraction (see Fig. 4.3.1b middle column).

Meanwhile, recent self-supervised learning (SSL) approaches [15, 44, 40, 41]

produce strong visual representations displaying object localization properties and

such without requiring any manual annotation. DINO [15] stands out with its

semantically meaningful features, which have been exploited for unsupervised object

discovery [95, 96, 100, 97]. DINO features prove useful also for zero-shot semantic

segmentation [29, 141, 138], but require expensive sliding window sampling [29, 138]

or building concept-specific prototypes and ensemble strategies [141].

In this work, we aim for unaltered patch-level CLIP features with minimal run-

time overhead. To this end, we re-examine the localization properties of MaskCLIP

features and observe that it is possible to easily refine them with guidance from

SSL models. In detail, we train a simple convolutional layer on unlabeled data to

produce pooling weights to perform correlation-guided dense feature pooling from

CLIP without distorting the vision-language alignment. This layer is optimized

to mimic the patch correlations of DINO [15] that indicate likely layouts of visual

concepts in the images. Furthermore, we show that the unsupervised objectness

information given by FOUND [100] from DINO features can also be directly learned

from CLIP features again in a fully unsupervised fashion with a single convolutional

layer and helps improve the segmentation of the ill-defined ‘background’ prompt.

With CLIP-DINOiser, we obtain high-quality masks in a single forward pass on CLIP

(see Fig. 4.1.1). CLIP-DINOiser is amenable to producing dense semantic maps.

To summarize, our contributions are:

• We propose a light pooling mechanism to refine MaskCLIP features by leverag-

ing guidance from SSL features without degrading its original open-vocabulary

properties. CLIP-DINOiser does not require any annotations nor retraining

CLIP from scratch, but only a single CLIP forward pass.

• We show that CLIP already contains good localization properties which can be

exploited. We leverage simple convolutional layers to emphasize visual concept



layouts from dense CLIP features. We train them without any annotation on

only 1k of raw images randomly sampled in ImageNet [6]. We believe that this

finding could be further exploited in different contexts.

• Our method achieves state-of-the-art results on complex semantic segmenta-

tion datasets such as COCO [142], Pascal Context [88], Cityscapes [143] and

ADE20K [144].

4.2. Related Work

Zero-shot semantic segmentation. This task has been typically approached by

methods which aim at generalizing from seen classes to unseen ones [102, 101, 103,

104, 105, 106, 107, 108]. Such strategies train models with full supervision on the

set of seen classes and propose different solutions to extend them to unseen ones

without new images (labeled or unlabeled), e.g., by exploiting class information

and relationships encapsulated in popular word embeddings [109, 110]. While they

produce fine segmentations without computational overhead, these methods require

pixel-level annotations for the seen classes.

From CLIP to open-vocabulary segmentation. The surge of VLMs with aligned

image-language representations [13, 24, 54] brought back into the spotlight the

zero-shot classification task. However, the extension to zero-shot segmentation is

not obvious as the CLIP architecture is not equipped to yield dense vision-language

features [28, 51].To produce dense CLIP features, several approaches fine-tune or

train from scratch pixel-aligned CLIP-like models with additional modules, mecha-

nisms or supervision objectives [94, 75, 91, 116, 92] on datasets with annotations of

varying granularity and quality: dense annotations [145, 146], class-agnostic object

masks [113, 51, 115], coarse captions [51, 91, 147, 112, 146, 94, 93, 116, 92, 75]

or pseudo-labels [28]. Recent works leverage image-level captions to align text to

regions (obtained without supervision): PACL [92] trains an embedder module to

learn patch-to-text affinity, TCL [75] proposes a local contrastive objective to align

well-selected patches to the text and ViewCO [117] leverages multi-view consistency.

On the downside, such models require long training on millions of images or specific

types of very costly annotations. Also, fine-tuning CLIP with a defined vocabulary

is more computationally appealing [28, 145, 146], but alters the open-vocabulary

properties of the features [132].

Most related to us is a line of works that investigate how to directly densify CLIP

features [28, 29, 132, 137, 138] to obtain per-patch CLIP features. Such densification
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can be performed by aggregating features from multiple views [137, 138] or from

sliding windows [29, 132] at the extra-cost of multiple forward passes. MaskCLIP [28]

drops the global pooling layer of CLIP and matches the projected features directly to

text via a 1×1 convolution layer. By doing so they achieve dense predictions, however

noisy.

With a concept-driven perspective, some methods [118, 140, 141] build codebooks

of visual prototypes per concept, including negative prototypes [141], and then

perform co-segmentation [118]. While such an approach yields good results, it is,

however, at the cost of building expensive class-specific prototypes, therefore diverging

from open-vocabulary scenarios. Instead, we aim to remain open to avoid retraining

a model or building new expensive prototypes whenever a new concept is considered.

To that end, we devise a dense CLIP-feature extraction method that preserves the

open-vocabulary quality.

Leveraging self-supervised models & CLIP. Recent self-supervised ViTs [15,

44, 20, 41, 49] have demonstrated features with good localization properties [95, 96,

97, 100]. Such features have also been exploited in the context of open-vocabulary

segmentation methods, e.g. for pre-training for the visual backbone [91, 116, 148],

co-segmentation [118], clustering patches into masks [124], representing object pro-

totypes [141]. Related to us is the recent CLIP-DIY [29], which computes patch-level

representations from CLIP features from different image crops with guidance from

an unsupervised saliency segmenter [100] FOUND. While we also leverage the

latter, in contrast with CLIP-DIY, which runs multiple forward passes to build

their dense CLIP features, our method requires only a single forward pass of CLIP.

Furthermore, our method mitigates the limits of FOUND in cluttered scenarios by

integrating an uncertainty constraint. Finally, we leverage the informative patch

correlation properties of DINO [15] and show that it is possible to teach CLIP to

produce DINO-like features through light convolutional layers.

4.3. Method

We present in this section CLIP-DINOiser, a simple and efficient strategy to im-

prove MaskCLIP using localization information extracted from CLIP –with a lightweight

model trained to mimic some of DINO’s properties. We first set the goal in Sec. 4.3.1

and present MaskCLIP [28] in Sec. 4.3.2. We then introduce our strategy which

leverages self-supervised features localization information to consolidate MaskCLIP

features in Sec. 4.3.3 and discuss how such localization information can directly be
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learnt from CLIP in Sec. 4.3.4 (we visualize both steps in Fig. 4.3.2). We also propose

a way to improve the ‘background’ filtering in Sec. 4.3.5.

4.3.1. Problem statement

In this work, we aim to produce open-vocabulary1 semantic segmentation of

an image. We consider an image X ∈ RH×W×3 which we split into a sequence of N

patches of dimensions P ×P ×3 with P ×P the patch size and N = +
H
P
, · +

W
P
,. A class

token noted CLS, is added to the input sequence, and we feed the N +1 patches to

a ViT [125] model. We aim at producing dense visual features F ∈RN×d, with d the

feature dimension, that can later be matched to any set of text inputs embedded in

the same space. In particular, the goal is to produce a segmentation map per textual

query.

4.3.2. Preliminaries on MaskCLIP

Extracting dense open-vocabulary features. The popular CLIP [54] model

pre-trained on image/caption pairs produces good global image features but was not

trained to generate high-quality 2D feature maps. To extract such dense feature

maps relevant to semantic segmentation, Zhou et al. [28] revisit the global attention

pooling layer of the last attention layer of the model. The authors discard the query

and key embeddings of the layer and transform both the value projection and the

last linear layer into a conv 1×1 layer. With this new model, named MaskCLIP and

denoted φ(·), we extract d-dimensional features φL(X ) ∈RN×d from the last layer L

which retains most of the open-vocabulary properties of CLIP [28].

Semantic segmentation given textual queries. We also extract CLIP textual

features φT(t j) for each text query t j ∈ T with j ∈ {1, . . . , |T |}. Segmentation maps are

then generated by computing the cosine similarity between each of the visual patch

features and of the textual prompts after L2-normalization. The most similar prompt

is assigned to each patch. Note that a query ‘background’ can be added in order to

obtain negative patches. Using MaskCLIP allows us to produce dense segmentation

maps with a single forward pass of the classic CLIP model, but its outputs are noisy,

as visible in Fig. 4.3.1b (middle column).

1 We adopt the taxonomy defined in the recent survey [14] and define our method as
‘open-vocabulary’, with capabilities to generalize to unseen datasets.



4.3.3. DINOising open-vocabulary features

In this work, we aim to improve MaskCLIP’s open-vocabulary features described

above. To do so, we propose to leverage the known good localization properties of

self-supervised features [15, 48, 95, 96, 100, 149] .

Extracting self-supervised correlation information. Recent works [95, 96]

have shown that the patch correlation information of the embeddings from the

last attention layer of the self-supervised model, DINO [15] can help highlight

objects in images. We use here the value embeddings, which we observe have finer

correlation than those of key and query (more discussion in Sec. 4.6). We extract such

self-supervised features ξ(X ) ∈RN×dξ and discard the CLS token. We then compute the

per-patch cosine-similarity and produce the affinity map Aξ ∈ [−1,1]N×N . We compare

in Fig. 4.3.3 the patch-similarities obtained for a patch seed with MaskCLIP and

DINO features and observe that the self-supervised features are more densely and

accurately correlated than those of CLIP.
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GT using F using F+

C
on

te
xt

A
D

E
20

k
C

it
ys

c.

(b) Impact of the pooling.

Figure 4.3.1. We present in (a) is our guided pooling strategy defined in Eq. (4.1). The
N × N affinity matrix is computed from patch features and is used to refine MaskCLIP
features (bottom left). In (b) we compare our results with F+ (right) versus those obtained
with MaskCLIP features (middle).

Strengthening features with guided pooling. In order to locally consolidate

MaskCLIP features φL(X ), now noted F, we propose to perform a concept-aware

linear combination of the features per patch with guidance from the patch affinity

Aξ. The feature combination strategy can be seen as a form of voting mechanism

that enforces similar patches to have similar CLIP features (and prediction) while

attenuating noisy features. Specifically, we compute the new features F+ ∈RN×d as

an average of MaskCLIP features F weighted by Aξ, presented in 4.3.1a. We zero-out



Aξ correlations below a threshold γ, following [95, 96], and compute the new features

for patch p ∈ {1, . . . , N}:

F+
p =

1
∑N

q=1 A
ξ
p,q

N
∑

q=1

A
ξ
p,q ·Fq. (4.1)

We then produce the segmentation maps S ∈ [−1,1]N×|T |, by comparing the new

features F+ to each textual queries in T . As shown in 4.3.1b, when using such

consolidated features, we obtain more accurate outputs and the high-frequency

predictions observed in MaskCLIP are smoothed out, showing the benefit of the

pooling.

4.3.4. Teaching CLIP a first DINO trick: object correlations

CLIP-DINOIserDINOising

BCE 
loss

CLIP-predicted 
affinity matrix

Training

DINO

DINO affinity 
matrix

Dot 
product

CLIPImg

conv3x3

Dense CLIP
features

MaskCLIP
projection

Guided Pooling
Eq.(2)

Inference

Dot 
product

gr
ad
ie
nt

DINOised
features

Dot 
product

conv3x3

CLIPImg

Affinity 
map

CLIPText

prompts: 
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Figure 4.3.2. Overview of CLIP-DINOiser which leverages the quality of self-supervised
features to improve the notoriously noisy MaskCLIP feature maps. We use DINO as a teacher
which ‘teaches’ CLIP how to extract localization information. We train (left) a conv3×3 layer
to reproduce the patch correlations obtained with DINO. At inference (right), an input
image is forwarded through the frozen CLIP image backbone and MaskCLIP projection.
The produced features are then improved with our pooling strategy which is guided by
correlations predicted with the trained convolutional layer applied on CLIP. With this light
‘DINOising’ process, we obtain ‘DINOised’ features which are matched against the prompts
features to produce CLIP-DINOiser outputs.

We have shown in the previous section that self-supervised correlation infor-

mation can successfully be used to improve the dense quality of open-vocabulary

features. If the difficulty of densifying CLIP is well-known, we show here that CLIP

features already contain good localization information, which can be extracted with



a light model. We indeed predict DINO correlations Aξ from CLIP with a single

convolutional layer.

In order to predict the DINO affinity map Aξ from CLIP features, we train

a single 3×3 convolutional layer g(·) :Rd →R
dg which projects intermediate features

φl(X )–extracted from layer l–into a smaller space of dimension dg < d. We enforce

the patch correlations of the generated features Aφ ∈ [−1,1]N×N :

Aφ
=

g(φl(X ))

∥g(φl(X ))∥
·

(

g(φl(X ))

∥g(φl(X ))∥

)¦

, (4.2)

with · denoting the outer product, to be close to the binarized correlations D = Aξ > γ

(we use here the same γ as defined above), using the binary cross-entropy loss Lc:

L
c
=

N
∑

p=1

[

Dp log A
φ
p + (1−Dp) log(1− A

φ
p)

]

. (4.3)

We present our layer training in Fig. 4.3.2 (left part) and observe the quality of

CLIP-predicted affinity matrix Aφ. We also show in Fig. 4.3.3 another example of

obtained Aφ and observe their similarity to DINO-based correlations. We use the

CLIP-produced correlations Aφ to replace Aξ in Eq. (4.1) to weight the pooling and

observe a similar boost over MaskCLIP, thus showing that good patch correlations

can indeed be extracted directly from CLIP. We can now discard DINO, and we name

CLIP-DINOiser the guided-pooling strategy, which uses CLIP-based correlation. As

shown in Fig. 4.3.2 (inference step), our method runs with a single forward pass of

CLIP model and a small extra layer.

image MaskCLIP corr. DINO Aξ
CLIP-DINOiserAφ

Figure 4.3.3. Comparison of the affinity maps between a seed (one on the ‘plant’ and the
other on a ‘pillow’) and the other patch features when using features of MaskCLIP, DINO
and ours after training.

4.3.5. Teaching CLIP a second DINO trick: background filtering

Moreover, as discussed earlier, a ‘background’ query may be added to the set

of textual queries T in order to help filter out patches falling in the background

and not corresponding to any objects. We do not assume here any prior knowledge

about classes of interest and focus rather on the foreground/background paradigm

[100]. We argue that relying solely on the textual prompt ‘background’ to catch
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(a) Comparison of background filtering

CLIPText
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Figure 4.3.4. We present in (a) a comparison of objectness mask generated by FOUND [100]
and with our layer using CLIP features. We carefully define the fusion operation and the
simple training strategy of the conv1×1 again using DINO as a teacher in Sec. 4.3.5. In (b)
is an overview of our background filtering which is applied when a ‘background’ prompt is
provided and helps reduce hallucinations.

all non-salient patches is underperforming and, similarly to [29], we propose to

use a very light-weight unsupervised foreground/background segmentation method,

namely FOUND [100] which also relies on DINO self-supervised features. We run

FOUND on the entire image and extract a prediction mask M ∈ {0,1}N in which a

patch is assigned the value 1 if falling into the foreground and 0 otherwise. We also

observe that saliencies produced by FOUND can be too restrictive, and objects that

are partially visible or in clutter should be discarded. To mitigate this behavior, we

propose to relax the background selection by integrating an additional uncertainty

constraint. To this end, we fuse the background information from both modalities by

assigning the ‘background’ prompt to patches p which are both uncertain, e.g. have

low confidence score σ(S)p < δ, with σ(·) the softmax operation, and which fall in the

background in M.

Learning FOUND objectness. Moreover, we are also able to learn the predictions

of FOUND [100] directly from CLIP features. To do so, we train a single 1×1 convo-

lutional layer h(·) :Rd →R which predicts from the features φl(X ) an objectness map

Mφ = h(φl(X )) ∈RN . We train the model to predict the FOUND binary mask M with

the binary cross-entropy loss Lm:

L
m
=

N
∑

p=1

[

Mp log(M
φ
p)+ (1−Mp) log(1−M

φ
p)

]

. (4.4)
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We show examples of predicted CLIP-based objectness in Fig. 4.3.4a and observe

their very high similarity to those produced with DINO. Moreover, we can now

replace M defined above with the binarized CLIP-based scores ζ(Mφ) > 0.5, with

ζ(·) the sigmoid operation, and observe a minimal drop in performances. We show

an example of background filtering with trained objectness in Fig. 4.3.4b.

4.4. Experiments

We detail in Sec. 4.4.1 the experimental setup used in our evaluation. We produce

state-of-the-art results on the task of open-vocabulary semantic segmentation in

Sec. 4.4.2 and ablation studies in Sec. 4.4.3.

4.4.1. Experimental setup

Technical details. We use in all experiments a frozen CLIP ViT-B/16 pre-trained

following OpenCLIP [54]. Our method CLIP-DINOiser uses two convolutional layers

to extract DINO-like information from CLIP layer l = 10 (the 3rd before the last which

was shown to provide the best results [150]). The first layer g(·) has a kernel 3×3 and

output dimension dg = 256 and h(·) a kernel 1×1 with dh = 1. The first is trained to

match the correlation information extracted from the value embeddings of the last

layer of a ViT-B/16 model trained following DINO [15]. The second layer is trained

to replicate the unsupervised object localization predictions of FOUND [100]–which

also uses DINO model. We train both layers with a binary cross-entropy loss on only

1k raw images randomly sampled from ImageNet [6] dataset without any annotation.

We report average scores over 3 runs with different sampling seeds and provide

standard deviations in Sec. 4.6. We follow [96] and binarize the correlations with

γ= 0.2. In the background filtering step, we use a high confidence score, i.e., δ= 0.99.

We train our model for 6k iterations with a batch size of 16 images using Adam

optimizer [151], which takes approximately 3 hours on a single NVIDIA RTX A5000

GPU. We decrease the learning rate for both heads by a factor of 0.1 after 5k iterations.

We apply data augmentations during training (random scale and cropping, flipping

and photometric distortions).

Datasets and metric. We evaluate our method on eight benchmarks typically used

for zero-shot semantic segmentation [75]. Following [75], we split them into two

groups. The first consists in datasets with a ‘background’ query: PASCAL VOC [88]

(noted ‘VOC’), PASCAL Context [152] (noted ‘Context’), and COCO Object [90] (noted

‘Object’) and the second without: PASCAL VOC20 [88] (noted ‘VOC20’), PASCAL



Context59 [152] (noted ‘C59’), COCO-Stuff [142] (noted ‘Stuff’), Cityscapes [143]

(noted ‘City’), and ADE20K [144] (noted ‘ADE’). We evaluate results with the standard

mIoU metric. We also follow the evaluation protocol of [75], use the implementations

provided by MMSegmentation [153], employ a sliding window strategy, resize the

input image to have a shorter side of 448. We also do not perform text expansions of

the class names and use only the standard ImageNet prompts following [54, 94, 28].

Baselines. We compare our method against state-of-the-art methods on OVSS. For a

fair comparison between methods, we report results without any post-processing step.

In our evaluations, we follow the taxonomy presented in [14] and compare our model

with the methods relying on language-image pretraining, also called open-vocabulary.

We split the compared baselines into four categories: (1) dataset specific which

employ pseudo-labeling and supervised training of a segmentation model on target

dataset: NamedMask [140], MaskCLIP+ [28]); (2) construct prototypes: ReCO [118],

OVDiff [141]; (3) train with text supervision including GroupViT [94], ZeroSeg [124],

SegCLIP [112], TCL [75], CLIPpy [91], OVSegmentor [116], which all require access

to additional datasets of millions of image/caption pairs (we note in the table the

exact datasets used for the training); and finally use frozen CLIP i.e. CLIP-DIY [29]

and MaskCLIP [28], which use pre-trained CLIP. Our method falls into the last

category as we do not modify CLIP, and do not need access to additional caption

annotations as we use only 1k unannotated images.

4.4.2. Open-vocabulary semantic segmentation

In this section, we discuss state-of-the-art results on the task of open-vocabulary

semantic segmentation.

Evaluation with no ‘background’ class. We first compare in Tab. 4.4.1 (‘No

background prompt’ column) the results on datasets which aim at the segmentation

of most of the pixels in an image and do not consider a ‘background’ class. We

observe that our method CLIP-DINOiser achieves the best results on four datasets

yielding +2.2, +5.0, +6.7 and +5.1 mIoU over the second best performing method.

Interestingly, we outperform methods which build expensive prototypes per visual

concept on fine-grained datasets, showing the benefit of our lightweight and general-

izable method. The only drop (-0.8 mIoU) is seen on VOC20 with respect to OVDiff;

we believe it is due to the benefit of generating per-concept negative prototypes,

which likely benefits this object-centric dataset. An adaptive granularity of feature

correlation could help mitigate this drop, which we leave for future work.



Concept ExtraInference No background prompt W/ bkg prompt

Methods spec. data backbone VOC20lC59llStuffllCityl lADEl lCont.ObjectVOC

aaaaaaa Dataset specific

MaskCLIP+ ✓ : I DLv2 - 31.1 18.0 - - - - -
NamedMask ✓ : I DLv3+ - - - - - - 27.7 59.2

aaaaaaa Build prototypes per visual concept

ReCo ✓ ✓ I CLIP 57.8 22.3 14.8 21.1 11.2 19.9 15.7 25.1

OVDiff ✓ ✓ :
CLIP+

DINO+SD
81.7 33.7 - - 14.9 30.1 34.8 67.1

aaaaaaa Text/image alignment training with captions

GroupViT : : IT CLIP 79.7 23.4 15.3 11.1 9.2 18.7 27.5 50.4
ZeroSeg : : IT CLIP - - - - - 21.8 22.1 42.9
SegCLIP : : IT CLIP - - - 11.0 8.7 24.7 26.5 52.6
TCL : : IT CLIP 77.5 30.3 19.6 23.1 14.9 24.3 30.4 51.2
CLIPpy : : IT CLIP - - - - 13.5 - 32.0 52.2
OVSegmentor : : IT CLIP - - - - 5.6 20.4 25.1 53.8

aaaaaaa Frozen CLIP

CLIP-DIY : ✓ :
CLIP+
DINO

79.7 19.8 13.3 11.6 9.9 19.7 31.0 59.9

MaskCLIP : ✓ : CLIP 53.7 23.3 14.7 21.6 10.8 21.1 15.5 29.3
MaskCLIP∗ : ✓ : CLIP 61.8 25.6 17.6 25.0 14.3 22.9 16.4 32.9
MaskCLIP∗ † : ✓ : CLIP 71.9 27.4 18.6 23.0 14.9 24.0 21.6 41.3
CLIP-DINOiser : ✓ I(1k) CLIP 80.9 35.9 24.6 31.7 20.0 32.4 34.8 62.1

Table 4.4.1. Open-vocabulary semantic segmentation quantitative comparison

using the mIoU metric. We separate in two columns the evaluation datasets: those without
a ‘background’ prompt and those with (noted ‘W/ bkg prompt’), as discussed in Sec. 4.4.1.
We report all methods without post-processing. We note with ∗ methods for which we com-
puted scores; we obtained MaskCLIP∗ scores with OpenCLIP [54] and mark with † the use
of MaskCLIP refinement. The first and second best methods are, respectively, bold and
underlined. We specify if a method assumes prior access to names of concepts (‘Concept
spec.’) and if it employs a frozen backbone ( ). We specify what additional data is used
at training (‘Extra data’) (‘I’ stands for images and ‘IT’ for image/text aligned data). Our
CLIP-DINOiser only needs 1k images from ImageNet to be trained. ‘SD’ stands for Stable
Diffusion [154]. We refer to Sec. 4.4.1 for more details on baselines and we detail the datasets
used for training by each method in the supplementary material.

Evaluation with ‘background’ class. We now compare our method on datasets

which include a ‘background’ query in Tab. 4.4.1 (‘W/ bkg prompt’ column). In this

setup, we also apply our background detection mechanism (detailed in Sec. 4.3.5)

on VOC and Object in order to improve the stuff-like background detection. We

observe that CLIP-DINOiser significantly outperforms all methods which do not

construct prototypes. Moreover, we surpass OVDiff (which uses an ensemble of three

models) on Context dataset by +2.3 mIoU and are on par on Object. It is to be noted

that with a single feature extractor, the performance of OVDiff drops by -10 mIoU,
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Figure 4.4.1. Qualitative open-vocabulary segmentation results. We compare ours
against CLIP-DIY [29], TCL [75] and MaskCLIP [28]. For a fair comparison, we do not apply
post-processing. All pixels annotated in black are from the background class. We observe
that our method achieves more accurate results both in terms of localization and class
assignment.

and the method requires the construction of a ‘background’ prototype per concept,

otherwise losing another -10 mIoU on VOC. On the other hand, CLIP-DINOiser

produces segmentation masks in a single pass of CLIP with the light addition of two

convolutional layers while remaining fully open-vocabulary as it does not require

any concept-specific constructs.

Qualitative results. We qualitatively compare in Fig. 4.4.1 CLIP-DINOiser with

high-performing TCL [75], CLIP-DIY [29] (two recent methods which provide code)

and our baseline method MaskCLIP [28] on images taken from the datasets consid-

ered in the evaluation. We observe that our method generates predictions accurate

both in terms of localization and assignment. Indeed, we obtain fined-grained results

on the challenging datasets, e.g. in the Cityscapes example, the text query ‘car’ and

in the ADE20k example ‘fountain’ are accurately located when CLIP-DIY and TCL

produce coarser results. Versus MaskCLIP, we can see the denoising capabilities of

CLIP-DINOiser as MaskCLIP hallucinations grow with the number of text queries

prompted at evaluation. Finally, in Fig. 4.1.1, we present ’in the wild’ examples



beyond the evaluation benchmarks and show that CLIP-DINOiser produces accurate

segmentation masks for arbitrary and very specific prompts, such as ‘wooden table’

or ‘leather bag’.

4.4.3. Ablation study

We now conduct an ablation study of the different components of CLIP-DINOiser

and investigate the impact of both our feature pooling strategy and background

detection.

The impact of the pooling mechanism. We propose with CLIP-DINOiser to com-

bine MaskCLIP features with a well-defined linear combination and compare differ-

ent solutions in Tab. 4.4.2a. In [28], the authors proposed to refine the predictions

with a combination weighted by CLIP key embeddings (noted ‘CLIP keys (preds.)’ in

the table) and boost MaskCLIP results by more than +8 mIoU on VOC and VOC20,

+1.8 and +1.0 and +0.6 mIoU on the other datasets. However, we show that working

directly at the feature level allows us to achieve better results; we obtain consistent

improvements ranging from +6 to +19 mIoU on all datasets when using DINO-based

weight Aξ and further improve when using trained CLIP-based weights Aφ.

Pooling strategy VOC VOC20 C59 Stuff ADE
MaskCLIP [28] - baseline 32.9 61.8 25.6 17.6 14.3
CLIP keys (preds.) [28] 41.3 71.9 27.4 18.6 14.9
ours w. CLIP keys 39.2 73.2 23.0 12.6 7.7
ours w. DINO Aξ 53.7 79.1 35.5 24.7 20.4
ours w. trained Aφ 54.0 80.9 35.9 24.6 20.0

(a) Pooling strategy

Pooling Bkg det. Object VOC
MaskCLIP [28] - baseline 16.4 32.9
ours w. DINO Aξ 29.9 53.7
ours w. DINO Aξ FOUND 32.1 60.1
ours w. DINO Aξ ours w. M 34.1 62.1
ours w. DINO Aξ ours w. Mφ 34.2 61.9
ours w. trained Aφ ours w. Mφ 34.8 62.1

(b) Background detection

Table 4.4.2. Impact of the pooling strategy (a) and background detection (b) on diverse
datasets reported with the mIoU metric.

The impact of the background detection. We now discuss the improvement

provided by our background refinement strategy, which is applied when stuff -like

background patches need to be detected. We report such results in Tab. 4.4.2b when

employing our pooling strategy (either using DINO features, noted ‘w. DINO Aξ’ or

those extracted from CLIP, noted ‘w. trained Aφ’). When using solely ‘FOUND’ for

background detection, as in [29], we improve by +6.4 mIoU on VOC (achieving 60.1

mIoU), but when relaxing FOUND (see Sec. 4.3.5) with an uncertainty condition,

we boost scores up to 62.1 on VOC, showing the limitation of using FOUND alone.

We also achieve similar results when using CLIP-based predictions Mφ both with

DINO-based Aξ and trained CLIP-based Aφ correlations, although we observe that

best results are overall obtained with trained Aφ. We visualize CLIP-based mask Mφ
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in Fig. 4.3.4a and see high similarity to DINO-based predictions, therefore showing

the localization quality of CLIP.

4.5. Conclusions

In this work, we propose to make the most out of CLIP features and show that

the features already contain useful localization information. Indeed, with light

convolutional layers, we are able to learn both good patch correlation and objectness

information by using the DINO self-supervised model as a guide. With such infor-

mation, our method CLIP-DINOiser performs zero-shot open-vocabulary semantic

segmentation in a single pass of CLIP model and with two light extra convolu-

tional layers. CLIP-DINOiser reaches state-of-the-art results on complex semantic

segmentation datasets.

Limitations Despite yielding strong results on open-vocabulary semantic seg-

mentation, CLIP-DINOiser is still bounded by the capability of the CLIP model to

separate classes, as it inherits its granularity. We believe that better prompt engi-

neering paired with better image-text models could further boost the performance

of CLIP-DINOiser.

4.6. Additional material

4.6.1. The impact of the training dataset

Training stability. We report the average results of three different randomly

sampled subsets of ImageNet used for the training. In the first row of Tab. 4.6.1,

we report the corresponding standard deviation. We observe that in all cases, the

standard deviation equals 0.1 mIoU or lower, therefore showing the stability of our

training.

Training with different datasets. Our method CLIP-DINOiser does not require

any labels to be trained. We investigate here the impact of training on the datasets

used to train self-supervised DINO [15], and FOUND [100], namely ImageNet

and DUTS-TR [155]. We report scores in Tab. 4.6.1. We also provide results when

increasing the dataset size to 10k on ImageNet. In all cases, we observe no significant

difference when using one dataset or another, and the size of the dataset does not

seem to impact results positively.
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Training dataset C59 V20 Stuff City ADE

IN-1k 35.9±0.1 80.9±0.0 24.6±0.1 31.7±0.1 20.0±0.0

IN-10k 35.9±0.0 80.3±0.1 24.7±0.0 31.9±0.1 20.1±0.0

DUTS-TR [155] 35.9 80.5 24.6 31.3 19.9

(a) Benchmark without ‘background’ prompt

Training dataset VOC Con. Obj

IN-1k 62.1±0.0 32.4±0.1 34.8±0.1

IN-10k 61.9±0.0 32.4±0.0 34.6±0.1

DUTS-TR [155] 62.0 32.4 34.8

(b) Benchmark with ‘background’ prompt

Table 4.6.1. Performance with different training datasets. When using random splits
extracted from ImageNet (noted ‘IN’), we report the average score and standard deviation
computed over training with three random splits (of 1k or 10k) extracted in ImageNet. In
(a), we report the scores on the datasets without ’background’ class, and in (b) with.
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Figure 4.6.1. Visualization of correlation and segmentation obtained with different
embeddings of DINO: query, key and value. The predicted prompts are: sky, tree, train, ground,
fence, grass.

4.6.2. Self-supervised features discussion

We present in Fig. 4.6.1 visualizations of correlation obtained using different

DINO embeddings extracted from DINO’s last attention layer, namely ‘query’, ‘key’

and ‘value’. Most unsupervised localization methods [95, 96, 100, 97] use the ‘key’

embeddings which allow the easy separation of foreground from background. How-

ever, we observed in this work that using instead the value features allows us to



Single object discovery Unsupervised saliency detection
Method VOC7 VOC12 C20k DUT-O. DUTS-T. ECSSD

FOUND [100] 72.5 76.1 62.9 60.8 65.4 80.5
ours 73.1 75.9 64.4 60.6 66.6 81.3

Table 4.6.2. Results of single object discovery and unsupervised saliency detection

obtained when following FOUND [100] protocol. We compute the single object discovery
scores on classic VOC benchmarks [88] and 20k images of COCO (noted ‘C20k’) following
[100] and use the CorLoc metric. We report the mIoU metric for unsupervised saliency
detection and provide all results with the post-processing bilateral solver. We note ‘DUT-O.’
DUT-OMRON [156] and ‘DUTS-T.’ stands for DUTS-TEST [155].

separate better elements in the background, as visible in the figure. Patches in the

background correlate to fewer background patches, and regions are, therefore, better

separated.

We also depict the final segmentation when using each type of feature and observe

the best result with ‘value’. We observe that more objects in the background are

well-segmented and labelled, e.g., ‘tree’ and ‘sky’.

4.6.3. Background evaluation with FOUND

We now evaluate the quality of our background filtering using the class-agnostic

foreground/background protocol defined in [100]. We report in Tab. 4.6.2 the scores

on the task of unsupervised object discovery (on VOC07 [157], VOC12 [88] and

COCO20k [90] datasets with CorLoc metric) and unsupervised saliency detection in

the ‘multi’ setup of [100] (all results are provided when using post-processing bilateral

solver on the classic DUT-OMRON [156], DUTS-TEST [155] and ECSSD [158]

datasets, with the mIoU metric). For more details on the evaluation setup, we refer

to [100]. On both tasks, we observe on par or even better results than [100], therefore

showing the quality of our foreground predictions learnt from CLIP.

4.6.4. Details on the methods compared

We detail in Tab. 4.6.3 the additional datasets used by baseline methods to train

their models if they use any. CLIP-DINOiser requires a significantly smaller amount

of data for training than other methods; it needs only 1k images randomly sampled

from ImageNet.

4.6.5. More qualitative results

In this section, we illustrate the benefits of our method through additional com-

parative qualitative results.



Methods Extra data

MaskCLIP+ [28] Target dataset
NamedMask [140] ImageNet(1.2M)+Target dataset
ReCo [118] ImageNet(1.2M)
GroupViT [94] CC12M [159]+RedCaps [160]
ZeroSeg [148] ImageNet(1.2M)+CC12M [159]
SegCLIP [112] CC3M [161]+COCO(400k)
TCL [75] CC12M [159]+CC3M [161]
CLIPpy [91] HQITP-134M [91]
OVSegmentor [116] CC4M [116]

CLIP-DINOiser ImageNet (random 1k images)

Table 4.6.3. Details on additional data required for training.
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Figure 4.6.2. Visual ablations of the impact of our pooling method. Examples from
ADE20K (top), PASCAL Context (middle), and Cityscapes (bottom) datasets.

Visual ablation of our spatial pooling. We show more examples of the application

of our method CLIP-DINOiser and compare it to MaskCLIP results in Fig. 4.6.2. We

observe that in all cases, our pooling reduces the noise in the predictions and helps

produce good-quality segmentation.

Visual ablation of our background filtering. By visualizing more results with

and without the background refinement step in Fig. 4.6.3, we observe that the

background refinement step helps remove uncertain segmentation such as the snow

area (which was classified as ‘snowboard’) in the top image, or on the cabinet, which

is not annotated in VOC (right image).

In-the-wild examples We show more in-the-wild examples in Fig. 4.6.4, where we

compare CLIP-DINOiser against MaskCLIP. MaskCLIP produces very noisy masks,
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Figure 4.6.3. Visual ablations of the impact of background detection. We show
examples from COCO Object (top, middle) and PASCAL VOC (bottom). We note with ‘bkg’
our background refinement.

especially when multiple false positive text queries are considered (we define such

false positive queries as prompt queries that appear in the final segmentation but

are not depicted in the image). Instead, CLIP-DINOiser eliminates such false positive

predictions and produces less noisy segmentation.

4.6.6. Failure modes

We discuss here the known failure modes of our method CLIP-DINOiser and

visualize some in Fig. 4.6.5. We first observe some of the biases of CLIP, which, for

instance, produces similar features for ‘train’ and ‘train tracks’ (left image), likely

due to their frequent co-occurrence across images. We have observed other instances

of this bias, e.g., for ‘boat’ and ‘sea’ queries. Second, although CLIP-DINOiser can

produce rather fine-grained segmentation (in terms of object sizes and classes),

it can miss small or far-away objects as in Cityscapes (middle image). Finally, as

with other open- vocabulary semantic segmentation methods, CLIP-DINOiser is not

robust to the ambiguities of the text queries. The example from ADE20K (right

image) is such a case, where ‘house’ is mistaken for ‘building’. In our experiments, we

observed multiple segmentation ambiguities, and we believe that the redefinition of

evaluation metrics could help address the issue. We stress that the current evaluation

setup, which is taken directly from fully supervised settings, might be limiting in

an open-vocabulary paradigm.



dancer

theatre

stage driver

black suit

impressionism

small dog

big dog

theatre driver

cabinet

food white plate

building

Santa Claus

sky snow

reindeer

road

Ada Lovelace

Princess Leia

Luke Skywalker

Alan Turing

Figure 4.6.4. In-the-wild comparative examples between MaskCLIP (top) and
CLIP-DINOiser (bottom). While MaskCLIP generates noisy masks when prompted with
false positive classes our method is robust and produces cleaner masks.
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Figure 4.6.5. Failure cases of our method. From left to right: input RGB image, ground
truth (GT) masks, masks predicted by CLIP-DINOiser, predicted text prompts. We discuss
these failure cases in Sec. 4.6.6.



5. Leveraging Statistics from Pre-training

Dataset

In previous chapters, we demonstrated how to adapt visual foundation models,

in particular CLIP, to open-vocabulary semantic segmentation without requiring

pixel-level annotations. In this chapter, we dive deeper into some of the intricacies of

OVSS and open-vocabulary tasks in general. Our experiments with CLIP-DINOiser

revealed the critical influence of text prompting on downstream performance (see

Fig. 4.1.1). Our investigations showed that segmentation accuracy for a given concept

can be substantially improved through the strategic selection of contrasting concepts

— a finding that aligns with CLIP’s contrastive learning objective.

This chapter presents our contribution to investigating the role of contextual text

prompts in OVSS. We begin by systematically analyzing the distribution of concepts

within CLIP’s pre-training data. Building on these findings, we develop two auto-

mated approaches for generating effective contrasting concepts at inference time: one

utilizing a large language model (LLM) and another exploiting statistical patterns

from the VLM’s pre-training dataset. Moreover, our analysis reveals limitations in

current OVSS evaluation benchmarks, leading us to propose an evaluation frame-

work that better reflects real-world challenges. We find that understanding concept

distribution in the pre-training dataset can enhance the performance of various

CLIP-based semantic segmentation methods, from fully supervised to training-free

approaches.
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Figure 5.1.1. Illustration of our proposed open-world scenario and benefits of

contrastive concepts (CC). We investigate open-world segmentation, where only one
(or a few) visual concepts are to be segmented (2nd column), while all concepts that can
occur in an image are unknown. Contrasting the query with “background” allows us to
obtain a coarse segmentation [91, 30] (3rd column), but is not enough to catch all pixels not

corresponding to the query when they are related or co-occur frequently in the VLM training
set. Our automatically-generated contrastive concepts (CC) (4th column) help to separate
and disentangle pixels of the query (right column, generated CC in text boxes), therefore
achieving better segmentation.

5.1. Introduction

Vision-language models such as CLIP [13] are trained to align text and global

image representations. Recently, VLMs have been proposed for denser tasks [28,

51, 145]. This includes the challenging pixel-level task of open-vocabulary semantic

segmentation, which consists of segmenting arbitrary visual concepts in images, i.e.,

visual entities such as objects, stuff (e.g., grass), or visual phenomena (e.g., sky). To

that end, several methods exploit a frozen CLIP model with additional operations

[28, 162, 30, 29], or fine-tune the model with specific losses [94, 91, 75, 112, 92].

Most OVSS methods label each pixel with the most probable prompt (or query)

among a finite set of prompts provided as input, contrasting concepts with each

other. This works well for benchmarks that provide a large and nearly exhaustive

list of things that can be found in the dataset images, such as ADE20K [144] or

COCO-Stuff [142]. However, when given a limited list of queries, these methods are

bound to occasionally suffer from hallucinations [30, 163]. In particular, common

setups do not handle the case where only a single concept is queried [75, 94], which

results in classifying all pixels using the same concept.
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To catch such hallucinations, a common strategy consists of using an extra class

labeled ‘background’, intended to capture pixels that do not correspond to any visual

concept being queried. This extra class is already present in object-centric datasets,

such as Pascal VOC [88]. It provides an easy, generic concept to be used as a negative

query, i.e., to be used to contrast with actual (positive) queries but to be discarded

from the final segmentation. However, the notion of background is not well defined

as it is context-dependent, therefore providing suboptimal contrasts. This strategy

also fails when a queried concept (e.g., “tree”) falls in the learned background (which

commonly encompasses trees).

In this work, we consider a practical and realistic OVSS task in which only one

or a few arbitrary concepts are to be segmented, leaving out the remaining pixels

without any prior knowledge of other concepts that may occur in an image. We name

this setup open-world 1 Given a query, instead of assuming access to a dataset-specific

set of classes (a closed-world setup), we propose to automatically suggest contrastive

concepts that are useful to better localize the queried concept, although they can

later be ignored. In particular, we focus on predicting concepts likely to co-occur with

the queried concept, e.g., “water” for the query “boat” (as visible in Fig. 5.1.1), thus

leading to better segment boundaries when prompted together.

Moreover, we argue that this scenario needs to be evaluated to better understand

the limitations of open-vocabulary segmentation methods. We therefore propose

a new metric to measure such an ability, namely IoU-single, which considers one

query prompt at a time and thus does not rely on the knowledge of potential domain

classes.

To summarize, our contributions are as follows:

• We introduce the notion of test-time contrastive concepts and discuss the im-

portance of contrastive concepts in open-vocabulary semantic segmentation.
• We analyze the usage of “background” as a test-time contrastive concept, which

has been accepted but not discussed so far.
• We propose a new single-query evaluation setup for open-world semantic seg-

mentation that does not rely on domain knowledge. We also propose a new

metric to evaluate the grounding of visual concepts.
• We propose two different methods to generate test-time contrastive concepts

automatically and show that our approaches consistently improve the results

of 7 different popular OVSS methods or backbones.

1 We distinguish our setup from open-world/ open-set setting known from literature [14], where
a segmentation model identifies novel classes and marks them as “unknown”. Here, we consider
the task of open-world open-vocabulary segmentation, thus considering only OVSS models, where
the goal is to segment queried concepts unknown at test time and leave the remaining pixels in an
image with no class. For the full name of our setup, we thus consider open-world open-vocabulary

segmentation but keep open-world throughout the rest of the work for brevity.
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5.2. Related work

Open-vocabulary semantic segmentation. VLMs trained on web-collected data

to produce aligned image-text representations [13, 24, 57] had a major impact on

open-vocabulary perception tasks and opened up new avenues for research and

practical applications. While CLIP can be used off-the-shelf for image classification

in different settings, it does not produce dense pixel-level features and predictions,

due to its final global attentive-pooling [28, 132]. To mitigate this and produce dense

image-text features, several methods finetune CLIP with dense supervision. Other

approaches devise new CLIP-like models trained from scratch using a pooling com-

patible with segmentation. Their supervision comes from large datasets annotated

with coarse captions [51, 91, 146, 94, 93, 116, 92, 75], object masks [113, 51, 115]

or pixel labels [145, 146]. However, when models are finetuned, they face feature

degradation [132], or require long training cycles on huge amounts of images when

trained from scratch.

CLIP densification methods have emerged as a low-cost alternative to produce

pixel-level image-text features while keeping CLIP frozen [28, 29, 132, 137, 30, 162].

The seminal MaskCLIP [28] mimics the global pooling layer of CLIP with a 1×1 conv

layer. The aggregation of features from multiple views and crops [137, 138, 29, 132]

also leads to dense features, yet with the additional cost of multiple forward passes.

Some methods [118, 140, 141] rely on codebooks of visual prototypes per concept,

including per-dataset negative prototypes [141], or leverage self-self attention to

create groups of similar tokens [162]. The recent CLIP-DINOiser [30] improves

MaskCLIP features with limited computational overhead thanks to a guided pooling

strategy that leverages the correlation information from DINO features [15].

Prompt augmentation. Prompt engineering is a common practice for adapting

Large Language Models (LLMs) to different language tasks [164] without updat-

ing parameters. This strategy of carefully selecting task-specific prompts also im-

proves the performance of VLMs. For instance, in the original CLIP work [13],

dataset-specific prompt templates, e.g., “a photo of the nice {· · ·}” were devised

towards improving zero-shot prediction performance. Although effective, manual

prompting can be a laborious task, as templates must be adapted per dataset and

sufficiently general to apply to all classes. Afterwards, different automated strategies

were subsequently explored, e.g., scoring and ensembling predictions from multiple

prompts [165]. Prompts can also be augmented by exploiting semantic relations

between concepts defined in WordNet [166] to generate new coarse/fine-grained

[167] or synonym [168] prompts. LLMs can be used as a knowledge base to produce



rich visual descriptions adapted for each class starting from simple class names

[169, 170]. Prompt features can be learned by considering visual co-occurrences

[171], a connection between training and test distributions [172], mining important

features for the VLM [173] or by test-time tuning on a sample [174]. Most of these

strategies have been designed and evaluated for the image classification task, and

their generalization and scalability for semantic segmentation are not always trivial.

Here, we aim to obtain better prompts for semantic segmentation to separate queried

object pixels from their background. We do this automatically without supervision

and without changing the parameters of either the text encoder or the image encoder,

leveraging statistics from VLM training data or LLM-based knowledge.

Dealing with contrastive concepts in OVSS. Our contrastive concept discovery

is tightly related to background handling in the context of open-vocabulary seman-

tic segmentation, since the standard benchmark datasets for this task, originally

designed for supervised learning, use background to describe unlabeled pixels,

for example, to cover concepts outside of the dataset vocabulary. There are three

main types of approaches to address this problem. The first one is to threshold

uncertain predictions [75, 162, 94] with a given probability value [94, 162] or clip

similarities [75]. The second group of methods leverages the object-centric nature of

certain datasets by defining background through visual saliency [29, 30]. Finally,

a significant body of work addresses the same issue by defining dataset-level con-

cepts either by adding handcrafted names of concepts to the background definition

[175, 176, 91, 53] or by extracting visual negative prototypes with a large diffusion

model [141]. In contrast, in this work, we aim for automatic discovery of contrastive

concepts without prior access to the vocabulary used to annotate the dataset.

Visual grounding is the task of localizing within images specific objects from

text descriptions. The major instances of visual grounding tasks are referring seg-

mentation that produce pixel-level predictions for one [177, 178, 179] or multiple

target objects [180] given a text description, and referring expression comprehension

[181, 182, 183, 184] that detects objects. Similarly to referring segmentation we

aim to segment specific user-defined objects. In contrast, we do not use supervision

to align textual descriptions with object masks and do not focus on text-described

relations between objects and mine contrastive concepts to disentangle target objects

from the background.
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5.3. Open-world open-vocabulary segmentation

with test-time contrastive concepts

We consider the following segmentation task: given an image and a set of textual

queries characterizing different visual concepts, the goal is to label all pixels in the

image corresponding to each concept, leaving out unrelated pixels, if any. Moreover,

we want to do so without any prior knowledge of the concepts that could be prompted

at the test time. We do not only want to be open-vocabulary in terms of the choice of

words for querying, but we also want to be open-world, not specialized in a given

domain or set of categories. For evaluation purposes, segmenting a specific dataset

thus shall not assume anything about the dataset, such as knowledge of represented

classes.

5.3.1. Introducing test-time contrastive concepts

Closed-world vs open-world open-vocabulary semantic segmentation. Even

when it is open-vocabulary, traditional semantic segmentation is closed-world in

the following sense. Given an RGB image I∈RH×W×3 and a set of textual queries

q∈Q, semantic segmentation produces a map Sclosew : {1...H}× {1...W} 7→ Q, where

each image pixel has to be assigned one of the queries as a label. In contrast,

open-world segmentation considers an additional dummy label ‘§’ to represent

any visual concept that is different from the queries. The segmentation map, in

this case, is then Sopenw : {1...H}× {1...W} 7→ Q ∪ {§} . For instance, to label a boat, it

is enough to ask for the “boat” segment; other pixels (sky, sea, sand, rocks, trees,

swimmers, etc.) are expected to be labeled § and thus ignored.

In the following, we show how to use any open-vocabulary segmenter in an open-world

fashion. We only assume that the segmenter uses a CLIP-like architecture with a

text encoder, noted φT(·), used to extract textual features φT(q)∈Rd for any query q,

where d is the feature dimension. Patch-level features φV(I) ∈R
h×w×d are generated

using the visual encoder, noted φV(·), where h=H/P, w=W /P, and P is the patch size.

The cosine similarities between each query feature and a patch feature are then used

as logits when upsampling to obtain pixel-level predictions. It yields a closed-world

segmentation, given our definition above.

From such segmentation, open-world segmentation could be derived by assigning

a pixel (or patch) to a query if the cosine similarity between the visual and query

embedding is above a given threshold. However, in practice, it has been commonly

observed that the CLIP space is not easily separable [163], thus making the definition



of such a threshold difficult without overfitting the query or datasets [162, 75]. We

further discuss the separability of CLIP patch features in Sec. 5.6.8.

Train-time contrastive concepts. Cues to separate visual concepts without su-

pervision primarily come from data where these concepts occur separately and are

described in their captions. If some concepts always co-occur, they are harder to be

told apart. This applies in particular to OVSS models trained only from captioned

images rather than from dense information. Sharing a caption pushes their embed-

ding to align on a common textual feature, which in turn tends to bring the visual

embeddings closer together. Still, such frequently co-occurring visual concepts can

often be separated in a closed-world setting: pixels (or patches) are then just mapped

to the query with which they align the most. However, a problem arises if a visual

concept of a query q can be mistaken for another visual concept present in the image

but not queried (e.g., querying “boat” but not “water” as in Fig. 5.1.1).

Test-time contrastive concepts. To address this problem, we propose to use one

or more additional textual queries of visual concepts that are likely to contrast well

with q. For example, when querying “boat”, we want to add the query “water”. We

name such queries test-time contrastive concepts and note them CCq. We further

propose different solutions to automatically generate CCq, and such without assum-

ing prior access to the image domain. Given prompt queries {q}∪CCq, we perform

closed-world segmentation and assign to the dummy label § any patches that are

labeled CCq.

Multi-query segmentation. This principle can be generalized to several simultane-

ous queries Q, with |Q|>1, considering the union of their contrastive concepts CCQ =
⋃

q∈Q CCq. Open-world multi-query segmentation consists in segmenting Q∪CCQ, and

ignoring pixels not assigned to the queries in Q, as in the single-query case. However,

some queries in Q may already contrast with each other, which puts them in competi-

tion with the set of contrastive concepts CCQ and could lead to their elimination when

pixels labeled in CCQ are discarded. To prevent it, we propose to exclude contrastive

concepts CCQ that are too similar to queries Q, e.g., with a cosine similarity of

text features above some threshold β: CCQ =
⋃

q∈Q{q′ ∈ CCq |φT(q′) ·φT(q)fβ}. In the

following, for simplicity, we only consider the single-query scenario, where |Q|=1.

Moreover, to our knowledge, none of the evaluation benchmarks currently used

for OVSS allows us to measure the effectiveness of such CC. We, therefore, propose

a variant of the traditional evaluation metric for semantic segmentation and discuss

it in detail in Sec. 5.4.1.



5.3.2. Contrasting with “background” (CC
BG

)

In recent work [91, 29, 30], the word “background” has been used to try to

capture a generic visual concept to help segment foreground objects, separating

them from their background. In our framework, it amounts to defining “background”

as a test-time contrastive concept to any query q. In other words, it defines CC
BG
q =

{“background”}.

However, if the word “background” feels natural to us, it is not obvious why

it should also make sense in the CLIP space. This formulation is not contextual,

meaning that the contrastive concept is not specific to the query, which might

be suboptimal. Worse, the “background” samples from which CLIP learned could

accidentally include the visual concept of the query, making the query representation

close to the background representation and defeating the contrast mechanism.

We investigate the occurrence of “background” in VLM training data to sort it out.

First, we use the metadata provided by [185], which describes the representation

of four thousand common concepts in LAION-400M [186], which is a subset of the

web-crawled LAION-2B dataset [126] used to train CLIP. In Fig. 5.3.1a, we plot the

frequency of occurrence of “background” among other VOC class names. We observe

that “background” is significantly more frequent than all other words, hinting that

it is widely available in CLIP training data and in general web-crawled data.
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(a) Freq. of VOC concepts (b) “background” in caption (c) “in the background” in caption

Figure 5.3.1. Statistics about “background” in metadata of web-crawled datasets.

(a) Frequency of some of the concepts from VOC dataset in LAION-400M caption samples.
Examples of images in web-crawled data with a caption including the words “background”
(b) or “in the background” (c).

Fig. 5.3.1b shows images sampled from the LAION dataset with a caption con-

taining “background”. We observe that they display a high diversity in colours

and textures. Images captioned with “in the background” (Fig. 5.3.1c) appear more

photo-oriented. We believe that the combination of a high frequency of the “back-



ground” word in the dataset and the diversity of associated images make it a good

generic contrastive concept and hence make CC
BG a baseline. However, superior

results have been obtained by applying well-designed tricks to handle the background

[29, 30, 75, 162], emphasizing the necessity of applying something more than simply

“background”.

An option is to define a generic background class list, as done by CLIPpy [91]

or CAT-Seg [53], which adds to the concept “background” a fixed list of concepts

potentially appearing in the background, e.g. “sky”, “forest”, “building”, to be dis-

carded. First, since these visual concepts are intended to be discarded, it would not

be possible to query them. Second, such a list is defined at the dataset level, making

it domain-specific. As it is impossible to exhaustively describe all visual concepts

appearing in any “background” (without prior knowledge of the domain or dataset),

we propose generating such complements specifically per query, as discussed below.

5.3.3. Automatic contrastive concepts (CC) generation
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Figure 5.3.2. Overview of our method. We propose two solutions to generate CC au-
tomatically, the first one (top-left) based on LLM prompting (CCL) and the second one,
CC

D that relies on the distribution of co-occurring concepts in a pre-training dataset of a
VLM (top-right). Both methods can be effectively integrated into various open-vocabulary
segmentation methods.

To generate contrastive concepts that are query-specific but also domain-agnostic,

the only data we can then leverage are (i) the VLM’s training data, or (ii) unspecific



external data. As we focus on text-based contrasts, we can (i) exploit the large vocab-

ulary of concepts used for VLM training or (ii) generate prompts via an LLM. Finally,

as we want good contrasts, we must find hard negatives. These are concepts that

surround queries in images. To gather them, we can (i) look for word co-occurrences

in training data or (ii) ask an LLM to list such concepts. Sec. 5.3.3 investigates

option (i), and Sec. 5.3.3, option (ii) and Fig. 5.3.2 presents a high-level overview of

both approaches.

Mining co-occurrence-based contrastive concepts (CC
D

)

As discussed above, ambiguity in segmentation for unsupervised approaches

arises from co-occurrences in training data. Yet, OVSS does better when prompted to

create segments simultaneously for co-occurring concepts. To list contrastive concepts

specific to a given query q, we propose thus to use the information of co-occurrence

in the VLM training captions. For efficiency, we construct offline a co-occurrence

dictionary, built for a large lexicon of textual concepts extracted from the captions.

We note CC
D
q the co-occurrence-based contrastive concepts we extract for a query q

based on this lexicon.

Co-occurrence extraction. We consider as lexicon a set of textual concepts T

extracted from captions of the VLM training dataset and construct the co-occurrence

matrix X ∈N
|T |×|T |. Concretely, two concepts {i, j}¢ T co-occur if they appear simul-

taneously in the caption of an image. X i, j counts the number of times concepts {i, j}

co-occur in some images. Next, we normalize the symmetric matrix X row-wise by the

number of occurrences of concept i in the dataset, producing the frequency matrix

X̂ . We then consider only concepts with frequent co-occurrences: for each i ∈ T , we

select concepts Ti = { j ∈ T | X̂ i, j > γ}, for some frequency threshold γ. Selecting only

a few contrastive concepts in this way is also consistent with the fact that we target

online segmentation: we need to be mindful of computational costs.

Concept filtering. To improve the quality of selected contrastive concepts Ti, we

design a simple filtering pipeline. For each target concept i ∈ T (which can be consid-

ered a future query), we remove from Ti any concept that might interfere with i and

induce false negatives. First, we discard uninformative words in captions: {“image”,

“photo”, “picture”, “view”}. Then, we remove abstract concepts, such as “liberty”. To

do so, we ask an LLM whether a given word can be visible or not in an image (more

details in Sec. 5.6.11). We also filter out concepts that are too semantically similar

to target concept i, e.g., such that their cosine similarity with φT(i) is more than

a threshold δ. We also consider an alternative approach to filtering, which uses

the structured ontology WordNet [166] to remove the CCs that possibly interfere



with q. However, our experiments, which are discussed in Sec. 5.6.10, show that our

proposed filtering mechanisms based on dataset statistics are more effective.

Generalization to arbitrary concepts. So far, we discussed how to select con-

trastive concepts CCD
i for a target concept i ∈ T . Now, when we are given an arbitrary

textual query q, to make the generation of contrastive concepts truly open-vocabulary,

we first find in the CLIP space the nearest neighbour i of q in T and then use for q

the contrastive concepts of i: CCD
q = CC

D
i .

Prompting an LLM to generate contrastive concepts (CC
L

)

Instead of extracting contrastive concepts from the VLM training set, here we

investigate another strategy, generating them using an LLM. For a given text query q,

we ask an LLM to directly generate contrastive concepts CC
L
q , without the need

for subsequent filtering. To that end, we design a prompt that excludes potential

synonyms, meronyms (e.g., “wing” for “plane”), or possible contents (e.g., “wine” for

“bottle”). We present a shorter version of the prompt in Fig. 5.3.3 and include the

complete version in Sec. 5.6.11.

You are a helpful AI assistant with visual abilities. Given an input object O, I want you to generate a list of words 
related to objects that can be surrounding input object O in an image to help me perform semantic segmentation.

Figure 5.3.3. An abbreviated version of the prompt we use to generate CC
L.

Using an LLM has the benefit of producing specific contrastive concepts CCq for

any target query q, without returning to a fixed and practically limited lexicon.

5.4. Evaluation

5.4.1. Evaluating open-world segmentation

We discuss here our evaluation protocols and present our new metric IoU-single

specifically designed to evaluate open-world segmentation.

Evaluation datasets. We conduct our experiments on six datasets widely used for

the task of zero-shot semantic segmentation [75], fully-annotated COCO-Stuff [142],

Cityscapes [143] and ADE20K [144] and object-centric VOC [88], COCO-Object [90]

and Context [152], when considering “background” pixels. We treat the input images

following the protocol of [75], which we detail in Sec. 5.6.1.

Our IoU-single metric. To better evaluate the ability of a method to localize

a visual concept when given no other information, we propose the IoU-single metric.
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It modifies the classic IoU by considering each concept independently and then

averaging. Concretely, we individually segment each class annotated in the dataset

for the considered image, thus with |Q|=1. The IoU-single is then the average of

each IoU with the corresponding ground-truth class segment. We illustrate this

metric in Fig. 5.4.1, and provide its pseudo-code in Sec. 5.6.2. If a dataset contains

a background class, we do not consider it in the mIoU calculation.
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Figure 5.4.1. Illustration of IoU-single metric. We show the difference with the stan-
dard mIoU metric (dataset-driven mIoU), where all the concepts present on an image are
considered at once. On the contrary, our IoU-single considers each of the present concepts
separately to measure the single-class segmentation ability of open-vocabulary semantic
segmenters.

Classic mIoU evaluation. We also evaluate the impact of using our CC in the

classic mIoU scenario on the datasets that consider “background” as a class, i.e.,

VOC and COCO-Object. We prompt at once all dataset classes together with their

CCs, using our multiple-query strategy discussed in 5.3.1. We then assign pixels that

fall into any of the CCs to “background”, ensuring that none of the concepts competes

with the dataset queries. It allows us to verify if our CCs can act as background

without hurting the performance on foreground classes.

5.4.2. Evaluated methods

Test-time contrastive concepts. For CC
D generation, we use the statistics gath-

ered by [185] for four thousand common concepts in the LAION-400M dataset,

which is a subset of LAION-2B [126] and which is used to train CLIP [54]. We filter

contrastive concepts using a low co-occurrence threshold γ= 0.01 and a high CLIP



similarity threshold δ= 0.8. In the classic mIoU scenario, we use a threshold β= 0.9

to account for possible similarities between one query and contrastive concepts close

to the other queries. We discuss the selection of these values in Sec. 5.6.6. To generate

CC
L, we use the recent Mixtral-8x7B-Instruct model [187]. More details about the

setup can be found in Sec. 5.6.11 alongside our designed prompts in Sec. 5.6.11.

In our experiments, unless stated otherwise, we include “background” in all CC ’s:

CC
D
← {“background”}∪CC

D and CC
L
← {“background”}∪CC

L.

Baselines. To evaluate the impact of using contrastive concepts, we experiment

on 6 popular or state-of-the-art methods, one of which (MaskCLIP) uses 3 different

backbones, thus resulting in 7 different segmenters, which we believe represent

the current OVSS landscape. Concretely, we study two training-free methods that

directly exploit the CLIP backbone, namely MaskCLIP [28] and GEM [162], where

MaskCLIP may exploit different CLIP backbones [54] pre-trained either on LAION

[126], MetaCLIP [55], or by default on the original OpenAI training data [13]. We

also include TCL [75], CLIP-DINOiser [30] and supervised methods: CAT-Seg [53]

and SAN [188]. Details on the evaluation protocol, including background handling

strategies, can be found in Sec. 5.6.1. All compared methods use CLIP ViT-B/16.

5.4.3. Contrastive concepts generation results

We first present in Tab. 5.4.1 results obtained with our IoU-single metric on 3

datasets, namely ADE20K, Cityscapes and VOC. We compare results when using

different CC ’s proposed in this work. We also include results when having access to

privileged information (CCPI), i.e., the list of concepts present in images as given by

the evaluation dataset. More results can be found in Tab. 5.6.2.

CLIP VOC Cityscapes ADE20k

Method training data CC
BG

CC
L

CC
D

CC
BG

CC
L

CC
D

CC
PI

CC
BG

CC
L

CC
D

CC
PI

MaskCLIP OpenAI 44.2 52.2 53.4 15.0 22.5 22.0 30.6 20.2 23.5 25.2 29.8
DINOiser LAION-2B 59.3 63.1 64.7 23.2 30.6 27.3 36.0 28.9 29.7 31.6 35.5
TCL TCL’s 52.9* 52.6* 53.6* 9.8 26.3 22.0 29.7 14.9* 25.9 26.5 32.6
GEM MetaCLIP 48.6* 61.3* 64.6* 14.5* 21.5 14.6 20.6 21.5* 26.3 29.1 33.0
SAN OpenAI 50.2 73.4 69.5 19.9 37.6 32.0 44.2 24.5 35.2 35.1 42.8
CAT-Seg OpenAI 52.8 69.5 67.7 – – – – 25.7 38.4 39.7 46.8

Table 5.4.1. Benefits of CC measured in IoU-single. ‘*’ indicates that the method’s
original background handling is applied, if any and provided it gives the best results. Note
that CAT-Seg input resolution is 640x640, whereas it is 448x448 for all the other methods.
We note CC

PIthe unrealistic setup where we have access to all of the dataset classes and use
them as systematic contrastive concepts (except for VOC, as its annotations do not cover all

pixels). Please note that CC
BG is our baseline.



“Background” is not enough. We start by analyzing the overall impact of our

proposed CCs. In all cases, we observe a significant improvement when using con-

trastive concepts CC
D and CC

L compared to the CC
BG. Even for object-centric VOC

where CC
BGalready provides a strong baseline, our proposed CC generation methods

bring significant gains ranging from 0.7 to 16.7 points. Interestingly, test-time CCs

also work well for supervised CAT-Seg, showing that our method is beneficial for

open-vocabulary segmenters with all levels of supervision.

CC
L generalize better to domain-specific datasets. For both VOC and ADE20K,

the co-occurrence-based CC
D outperforms most of the time the LLM-based CC

L,

with a margin ranging from 0.6 to 2.8 points. However, this trend does not hold for

Cityscapes, where CCL gives the best results for all methods. In particular, Cityscapes

is a dataset of urban driving scenes that contains images depicting a few recurring

concepts. This may suggest that LLMs can produce better results than CC
D for

such domain-specific tasks. We also note that CCL generally produces fewer CCs, but

we do not observe a correlation between segmentation performance and |CC |, as

shown in Sec. 5.6.7.

Test-time concepts are different from train-time concepts. We also observe

that CCPIresults overall do not exceed 50% mIoU. The segmentation quality might

thus be limited by the VLM capacity or by a mismatch between the dataset classes

and the training data. Well-designed prompt engineering could help address this

issue [189] and improve segmentation results.

Method Bkg. Object VOC

MaskCLIP
CC

BG 17.8 35.1
CC

L 25.9 46.2
CC

D 25.1 46.4

GEM
threshold 27.4 46.6

CC
L 35.7 60.0

CC
D 35.5 60.5

Table 5.4.2. Results w/

mIoU.

Classic mIoU evaluation. Additionally, in Tab. 5.4.2,

we present results with the standard mIoU for

MaskCLIP (with LAION-2B backbone) and GEM. We

report results with various contrastive concepts (CC)

and the original background handling strategy when

applicable. We observe that in all cases, the results with

CC
D and CC

L are better than baseline CC
BG. We also

notice that for GEM the results are better than when

applying the background handling strategy originally

proposed in [162]. This shows that integrating our contrastive concepts does not

hurt or can even improve performance in the classic mIoU setup. We provide more

results in Tab. 5.6.1.



co- no sem. Mask TCL DINO
occ. abs. sim. CLIP iser

6 20.2 22.4 23.9
6 6 20.9 23.2 25.5

6 6 18.4 20.0 26.3
6 6 6 25.2 26.0 31.6

(a) Impact of filtering in CC
D

on ADE20K (%IoU-single).

Cityscapes ADE20k
Method w/o w/ w/o w/

MaskCLIP 22.3 22.5 22.5 23.5
DINOiser 30.3 30.6 27.5 29.7
TCL 26.0 26.2 25.4 26.3
GEM 21.3 21.4 25.7 26.1

(b) Adding “background” or
not to our LLM-based CC

L.

MaskCLIP VOC
w/ CLIP
training set CC

BG
CC

L
CC

D

LAION-2B 47.9 51.8 53.8
OpenAI 44.2 52.2 53.4
MetaCLIP 46.8 50.6 50.0

(c) Impact of pre-training
dataset on VOC (%IoU-single).

Table 5.4.3. Ablation studies. (a) The impact of filtering steps: ‘co-occ.’ is the
co-occurrence-based filtering; ‘no abs.’ is the removal of abstract concepts; ‘sem. sim.’ is
the semantic-similarity filtering. (b) Relevance of adding “background” to CC

L. (c) Varying
the pre-training dataset.

5.4.4. Ablation studies

CC
D concept filtering. In Tab. 5.4.3a, we analyze the impact of the different

filtering steps discussed in Sec. 5.3.3 on the challenging ADE20K dataset. We observe

that each step boosts results by removing noisy or detrimental concepts. The largest

gain is obtained when filtering highly similar (‘sem. sim.’) concepts. We also note that

the improvement is consistent for all methods. We report the performance without

the co-occurrence thresholding (w/o ‘co-occ.’) and observe a significant degradation.

More experiments in Sec. 5.6.10 suggest that ontology-based filtering (e.g., using

WordNet) does not help and can even be harmful.

Adding “background” to CC
L. In Tab. 5.4.3b, we study the influence of adding

the word “background” to the set of contrastive concepts CC
L generated with the

LLM. We observe that it is always beneficial, in most cases with little gain, except

on ADE20k, where the gain is up to 2.2 IoU-single pts.

Impact of the pre-training dataset. Tab. 5.4.3c shows the results of MaskCLIP

with different datasets used to train CLIP. We observe that using CC
D always gives

a boost over using “background” alone (CCBG) across all pre-training datasets, in-

cluding on the highly-curated MetaCLIP. However, we notice that for MetaCLIP,

CC
L gives even better results, suggesting that leveraging LLMs can also be more

profitable with backbones pre-trained on carefully curated datasets.

5.4.5. Qualitative results

In Fig. 5.4.2, we present qualitative examples when using different contrastive

concepts proposed in this work. We compare CC
L and CC

D with ground truth (GT)

and baseline CC
BG. For both CC

L and CC
D, we present the output segmentation mask



for the queried concept together with its contrastive concepts (noted all) as well as

the single queried concept (noted single), where CCs are discarded. We observe that

the output masks produced by our methods are more accurate, removing the noise

from related concepts, e.g. “tree” for the bird or “sofa” for the “bed”.

GT CC
BG

CC
D (single) CC

D (all) CC
L (single) CC

L (all)

b
e
d

c
e
i
l
i
n
g

b
i
r
d

a
e
r
o
p
l
a
n
e

Figure 5.4.2. Qualitative results. We show segmentation examples from ADE20K (1st

and 2nd row) and Context (3rd and 4th row), with segments produced by CLIP-DINOiser. For
CC

D and CC
L, we additionally show the joint segmentation of all contrastive classes (all).

Generalization to arbitrary concepts. Fig. 5.4.3 presents results when prompt-

ing queries that are not included in the subset of concepts T extracted from the

VLM training dataset, such as “muffin” or “cavalier” (a dog breed). We show the

closest neighbour for the query q below each example and visualize masks for both

MaskCLIP and CLIP-DINOiser. We observe that the CC
D generation method lever-

aging statistics from pre-training datasets is also robust to examples outside of the

co-occurrence dictionary by accurately mapping q to its closest concept in T , e.g.,

mapping “cavalier” to “dog”.

5.5. Conclusion

In this work, we identify limitations of the current evaluation setup for open-

vocabulary semantic segmentation tasks, which are inherited from closed-world

evaluation benchmarks. To bridge the gap between closed- and open-world setups, we

propose the single-class segmentation scenario. We study the limitations of current

state-of-the-art models when we assume no prior access to in-domain classes and

propose to automatically discover contrastive concepts CC that are useful to better
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MaskCLIP CLIP-DINOiser
CC

D (single) CC
D (all) CC

D (single) CC
D (all)

q: muffin → i ∈ T : pastry

q: cavalier → i ∈ T : dog

Figure 5.4.3. In the wild examples. We visualize results for MaskCLIP and
CLIP-DINOiser for query concepts beyond T . The closest neighbour to a query is presented
below each example (grey row).

localize any queried concept. To do so, we propose two methods leveraging either the

distribution of co-occurrences in the VLM’s training set or an LLM to generate such

CC. Our results show the generalizability of our proposed method across several

setups.

5.6. Additional material

5.6.1. Details on the evaluation

Evaluation protocol. Our experiments follow the evaluation protocol of [75]. We

use MMSegmentation implementation [153] with a sliding window strategy and

resize input images to have a shorter side of 448. In the case of CAT-Seg, we retain

the original model framework and integrate IoU-single into Detectron [190]. We

also use its evaluation protocol, meaning that the input images differ from other

evaluated methods, i.e., with an input image size of 640x640. Regarding the text

prompts, we keep the native prompting of each method to stay as close as possible to

the methods.

Background handling of baselines. We detail here the different strategies em-

ployed in the methods that we evaluate to handle the background.

TCL [75] applies thresholding and considers pixels with maximal logit f 0.5 to

be in the background, where the logits are the cosine similarities of the visual

embedding with the embedding of queries.
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GEM [162] applies a background handling strategy only for Pascal VOC. It only

predicts the foreground classes. The background is obtained by thresholding the

softmax-normalized similarity between the patch tokens and the text embedding

of each class name. The threshold is fixed (set to 0.85). In our experiments with

VOC, we explore the performance of GEM both with and without background

handling and report each time a better score. For other datasets than VOC, we

apply only our methods.

MaskCLIP [28] does not use any dedicated mechanism for background. There-

fore, we do not report the original setup for it.

CLIP-DINOiser [30] leverages a foreground/background saliency strategy which

focuses on foreground pixels. In that case, the foreground/background is defined

following FOUND [100], which focuses on objectness and mainly discards pixels

corresponding to stuff-like classes, which might also be of interest.

CAT-Seg [53] does not apply any background handling strategy. Instead, for

VOC they create a list of potential background classes and use them as "dummy"

classes. This approach is closest to what we propose. In practice, for the VOC

dataset, the authors use class names from the Context dataset, an extension of

VOC with +40 class names.

SAN [188] does not design any background handling strategy and does not

evaluate datasets with "background" class.

5.6.2. About the IoU-single metric

We present a pseudo-code of our metric in Algorithm 1.

5.6.3. More quantitative results

State-of-the-art results under classic mIoU. In Tab. 5.6.1, we report the re-

sults under the classic mIoU metric for selected state-of-the-art methods on open-

vocabulary semantic segmentation. For each of the methods, we detail the spe-

cific background handling techniques (if any), the CLIP backbone used as well as

additional datasets used for training.

Extending the dataset vocabulary with our generated contrastive concepts does

not hurt the overall performance under a normal setup when all dataset labels are

considered prompts. For GEM and MaskCLIP we observe significant improvements

over their original setups on VOC. This holds for both contrastive concept generation

methods CC
D and CC

L. Looking at the results of CLIP-DINOiser, we observe that

saliency is still more effective in the object-centric scenario.



Algorithm 1: IoU-single
Results : mean IoU-single– a mIoU score for a single-query scenario for a given

image
Inputs : I – input image: I ∈R

H×W×3

Y – ground-truth annotations of I: gt ∈N
H×W×1

T – ground-truth text labels
CC – a dictionary of contrastive concepts per query
model – segmenter producing pixel-level predictions given text queries

procedure IoUsingle(I,Y ):
// Get unique classes from Y

gtcls ← unique(Y)

scores ←;

for i ∈ gtcls do
q ← Ti

// Text prompts include query q and contrastive concepts of q

tq ← q∪CCq

// Get model predictions for given prompt set

ŷ← model(I, tq)

// Get binarized version of predicted mask

ŷ← binarize( ŷ, i)

// Get ground-truth binary mask for gt class i

y← binarize(Y , i)

// Record corresponding IoU

scores ← scores ∪ IoU( ŷ, y)

end for
return mean(scores)

More open-world evaluation results. Tab. 5.6.2 extends Tab. 5.4.1 and completes

the results obtained with the IoU-single on all the datasets that we considered.

5.6.4. Failure case analysis

We present some failure cases of our approach in Fig. 5.6.1. Precisely, we show

examples of CLIP-DINOiser when one of the generation methods fails. The first

example (first row), CCL suggests “blanket" for “bed", which typically covers the query

concept. One of the potential improvements would be to instruct an LLM to ignore

potentially occluding objects. In the second row, both methods fail to provide “floor"

to contrast with “rug". We notice that CCL tend to be more oriented towards objects,

as opposed to stuff-like classes. We also observe that in the example, a small part of

a painting on the wall is segmented as "rug". This suggests that CCs might not give a

complete set of. Finally, in the third example, both methods fail to generate “person"

to contrast with “bedclothes". However, CCL includes “pyjamas", which results in a

better segmentation overall. Image-conditioned generation (e.g., with VLMs) could

be a candidate solution to this problem, but we leave it for future work.



Background Type of CLIP Training Dataset

Methods handling CC backbone dataset Context Object VOC

GroupViT threshold ∅ scratch CC12M+RedCaps 18.7 27.5 50.4
CLIP-DIY saliency ∅ LAION-2B - 19.7 31.0 59.9
TCL threshold ∅ OpenAI CC12M+CC3M 24.3 30.4 51.2
MaskCLIP† ∅ ∅ OpenAI - 21.1 15.5 29.3
MaskCLIP∗

∅ ∅ LAION-2B - 22.9 16.4 32.9
MaskCLIP∗ (+keys) ∅ ∅ LAION-2B - 24.0 21.6 41.3
CLIP-DINOiser ∅ ∅ LAION-2B ImageNet (1k im.) 32.4 29.9 53.7
GEM ∅ ∅ MetaCLIP - - - 46.8

CLIP-DINOiser

saliency ∅ LAION-2B ImageNet (1k im.) – 34.8 62.1

CC CC
BG LAION-2B ImageNet (1k im.) 32.4 29.5 54.0

CC CC
L LAION-2B ImageNet (1k im.) 31.3 35.0 60.8

CC CC
D LAION-2B ImageNet (1k im.) 31.8 33.3 60.4

MaskCLIP
CC CC

BG LAION-2B - 23.6 17.8 35.1
CC CC

L LAION-2B - 22.5 25.9 46.2
CC CC

D LAION-2B - 23.2 25.1 46.4

GEM threshold ∅ MetaCLIP - 33.4* 27.4* 46.6*
GEM CC CC

L MetaCLIP - 31.6 35.7 60.0
GEM CC CC

D MetaCLIP - 32.1 35.5 60.5

Table 5.6.1. Results with standard mIoU metric when employing different contrastive
concept generation strategies. ’*’ denotes our implementation, ‘†’ denotes results from TCL
[75], and ’MaskCLIP (+keys)’ denotes keys refinement proposed in the original paper [28].
Training datasets include CC12M [159], RedCaps [160], ImageNet [6], CC3M [161].

5.6.5. More qualitative results

More qualitative results are provided in Fig. 5.6.2, comparing CC
D to CC

L.

5.6.6. Hyperparameter selection

In this section, we discuss the selection of hyperparameters for our CC generation.

For the frequency threshold γ and the cosine similarity threshold δ, we randomly

select 100 images from the training set of the ADE20K dataset and report IoU-single

on this subset — which we observed was enough to select the values. We report in

Tab. 5.6.3 a parameter study of both hyperparameters and mark in grey selected

values, i.e., γ= 0.01 and δ= 0.8. For γ, we observe that values γ< 0.005 are too low,

most likely introducing too much noise in selected contrastive concepts.

Tab. 5.6.4 presents a parameter study of the cosine similarity of text queries

β in multi-query segmentation. Here, we randomly select 100 images from the

VOC training set and report classic mIoU for different β values. We select β= 0.9

because it gives the best result for most methods. We also note that controlling the

similarity between query concepts and contrastive concepts in the multiple-query



Method CLIP dataset Original CC
PI

CC
BG

CC
L

CC
D

VOC

MaskCLIP
LAION-2B – 49.9 47.9 51.8 53.6

OpenAI – 47.1 44.2 52.2 53.4
MetaCLIP – 47.9 46.6 50.6 50.1

CLIP-DINOiser LAION-2B 63.8* 61.0 59.3 63.1 64.7
TCL TCL’s 52.9* 53.0* 52.9* 52.6* 53.6*
GEM MetaCLIP – – 48.6* 61.3* 64.6*
CAT-Seg OpenAI – – 52.8 69.5 67.7

Cityscapes

MaskCLIP
LAION-2B – 32.2 16.2 27.2 24.0

OpenAI – 30.6 15.0 22.5 22.0
MetaCLIP – 30.0 13.6 24.6 23.3

CLIP-DINOiser LAION-2B 20.8 36.0 23.2 30.6 27.3
TCL TCL’s 18.6* 29.7 9.8 26.3 22.0
GEM MetaCLIP – 20.6 14.5* 21.5 14.6

COCO-Stuff

MaskCLIP
LAION-2B – 34.1 26.4 28.8 29.5

OpenAI – 33.6 24.1 28.4 28.8
MetaCLIP – 34.0 25.8 28.1 28.1

CLIP-DINOiser LAION-2B 28.0* 35.3 32.4 33.9 34.4
TCL TCL’s 25.0* 34.7 17.4 29.5 30.6
GEM MetaCLIP – 38.3 22.9* 32.2 33.6

ADE20k

MaskCLIP
LAION-2B – 33.2 22.7 26.8 27.8

OpenAI – 29.8 20.2 23.5 25.2
MetaCLIP – 32.1 21.5 24.7 26.0

CLIP-DINOiser LAION-2B 28.8* 35.3 28.9 29.7 31.6
TCL TCL’s 14.8* 32.6 14.9* 25.9 26.5
GEM MetaCLIP – 33.0 21.5* 26.3 29.1
CAT-Seg OpenAI – 46.8 25.7 38.4 39.7

COCO-Object

MaskCLIP
LAION-2B – 32.1 27.7 33.7 32.9

OpenAI – 31.3 24.3 34.5 33.3
MetaCLIP – 30.9 27.4 32.2 31.1

CLIP-DINOiser LAION-2B 38.8* 38.9 35.5 41.6 39.9
TCL TCL’s 37.1* 38.1 37.2* 38.1* 37.2*
GEM MetaCLIP – – 31.4 39.7 40.1

Pascal Context

MaskCLIP
LAION-2B – 40.5 34.4 35.2 37.4

OpenAI – 41.1 32.9 34.7 36.8
MetaCLIP – 41.1 32.6 34.2 35.8

CLIP-DINOiser LAION-2B 33.9* 45.8 41.5 41.6 44.2
TCL TCL’s 29.7* 41.7 29.7* 36.8 38.2
GEM MetaCLIP – – 26.9 40.1 42.1

Table 5.6.2. Results on all datasets with our IoU-single. ‘*’ denotes the result when the
original background handling gives the best results.
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Figure 5.6.1. Failure cases of our method. We show examples of CLIP-DINOiser when
one of the methods fails to generate accurate CC. In the first example CC

L suggests “blanket"
for “bed" which typically covers the query concept. In the second row, both methods fail to
provide “floor" to contrast with “rug". Finally, in the third example, both methods fail to
generate “person" to contrast with “bedclothes", however, CCL suggest “pyjamas", which
results in a better segmentation.
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Figure 5.6.2. More qualitative results of CLIP-DINOiser with different CC. Here we
focus on cases where CC

D and CC
L give different results. For “boat" (2nd row), CCL gives a

better result providing a good CC (“dock"). On the other hand, for “skyscraper" (3rd row),
CC

D yields slightly better results suggesting “sky" and not “cloud". Note that in this last
example, CCBG completely fails, possibly due to a difficult (uncommon) angle of view.

scenario is necessary. Not including this step (see results for β= 1.0) greatly degrades

performance.



values of γ values of δ
Method CLIP tr. data 0.001 0.005 0.01 0.015 0.02 0.95 0.9 0.85 0.8 0.75

MaskCLIP
OpenAI 24.4 26.0 24.8 24.4 23.2 19.9 21.0 23.0 24.4 22.8
Laion2B 25.8 27.8 27.4 26.0 25.4 23.0 24.1 26.4 27.4 24.6

MetaCLIP 22.0 24.1 24.4 23.8 23.4 22.7 23.7 25.9 27.2 23.7

DINOiser Laion2B 24.4 27.2 27.9 27.9 27.7 23.5 24.6 26.4 27.9 26.9

Table 5.6.3. Parameter study of γ and δ. Selection (marked in grey) of the hyperparameters
γ and δ with IoU-single on 100 randomly-selected images in ADE20k training dataset.

Method CLIP training data 1.0 0.95 0.9 0.85 0.8

MaskCLIP
OpenAI 26.0 40.4 41.1 39.1 32.1
Laion2B 35.3 43.7 44.0 44.6 42.2

MetaCLIP 24.4 39.1 40.3 34.3 30.6

DINOiser Laion2B 51.3 57.8 58.6 58.8 55.2
TCL TCL’s 37.2 47.6 47.7 47.1 47.7

Table 5.6.4. Selection of β with classic mIoU on 100 randomly-selected images in the
VOC training dataset. Results are reported for CC

L.

5.6.7. Average number of contrastive concepts vs performance

We present in Fig. 5.6.3 a plot of performance vs the number of contrastive

concepts when considering CC
D (Fig. 5.6.3(a)) and CC

L (Fig. 5.6.3(b)). The points

correspond to the IoU-single scores per class obtained with CLIP-DINOiser on all

the datasets we evaluate. We do not observe a strong correlation between the number

of contrastive concepts and performance, although there is a small mode of around

20 concepts when using CC
D. We also observe that, on average, |CCD

| > |CC
L
|.
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Figure 5.6.3. Number of CC vs performance. We compare the number of CC against
the performance of CLIP-DINOiser for each class used in our evaluations (considering all
datasets). Performance is reported with per class IoU-single %.



5.6.8. On separability of CLIP patch-features
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Figure 5.6.4. Distribution of maximum patch similarities with text prompts. We plot
histograms for 100 images of VOC (a) and ADE20K (b) of patch similarities in MaskCLIP.

In Fig. 5.6.4, we present an analysis of the patch-level CLIP space using MaskCLIP

features. The figure shows histograms of patch-level maximum text similarities (in

cosine similarity) across 100 randomly sampled images from VOC (a) and ADE20k (b).

We notice an overall concentration of cosine similarity scores in [0.1,0.3], suggesting

that the feature space is not easily separable.

To illustrate how our approach overcomes this issue, we present in Fig. 5.6.5

a t-SNE analysis over patch features from an image of the VOC dataset for the q =

"bird". We plot the result of classification for each separate set of CCs. We highlight in

orange the patches that belong to the ground truth mask of class "bird". We observe

that CCBGalready helps to separate the space of background concepts from "bird"

patches. However, we notice that only with CC
L or CC

D we can separate one visible

cluster left, possibly belonging to the patch features of a branch in the image, by

providing "branch" in the case of CCD or "tree" in CC
L. Both of our proposed methods

improve the final segmentation result.

5.6.9. Replacing CC with sigmoid operation

Using a binary criterion to separate a query from its background is a natural

alternative, and this could be implemented with a sigmoid.

We test using a sigmoid on CLIP similarity scores. We show the results of an

experiment with CLIP-DINOiser on VOC in Fig. 5.6.6. We make the following ob-

servations: (1) none of the thresholds allow us to reach the performance of CCBG,

and (2) the performance is very sensitive to the threshold value. We believe this is

because the CLIP space is not easily separable, as discussed in Sec. 5.6.8.
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Figure 5.6.5. t-SNE analysis of patch features for different CC of an image q = “bird".

We present patch features with their predicted closest text embedding coded in color. Text
embeddings are corresponding CC of q = “bird". We also mark the ground truth labels in
orange. The sample is from VOC dataset.
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Figure 5.6.6. Sigmoid experiments. We replace softmax with sigmoid applied on indi-
vidual patch-to-query prompt similarities. We show the variation of single-IoU% wrt. the
threshold that is applied after sigmoid to decide on a positive vs. "background" class. To get
the thresholds, we find the minimum and maximum values of the features after sigmoid
and linearly sample 30 values in this range. We can see that the result is sensitive to the
threshold value and does not reach the baseline of CCBG .

5.6.10. Ontology-based filtering with WordNet

Method MaskCLIP TCL CLIP-DINOiser

CC
D 25.2 26.0 31.6

CC
D + WordNet 25.2 26.4 26.3

CC
D + WordNet − sem. sim. 21.0 23.4 25.8

Table 5.6.5. Ontology-based (WordNet) filtering out synonyms, meronyms, hyponyms
and hypernyms (at depth 1) from CC

D . Results are reported on ADE20K, as %IoU-single.

Here, we discuss our experiments using the WordNet ontology [166] for CC
D

filtering. We extract synonyms, meronyms, hyponyms, and hypernyms for each query

concept in-depth 1 in the WordNet ontology. From the results in Tab. 5.6.5, we

observe that adding such filtering on top of our semantic similarity filtering brings

little to no improvement, suggesting that semantic filtering removes most of the

contrastive concepts that interfere with a query concept. Furthermore, replacing

semantic similarity with WordNet-based filtering yields significantly worse results

than our proposed CC
D.

5.6.11. Prompting the LLM

In this section, we provide more details about the LLM and the prompts used.

The LLM model. We use the recent Mixtral-8x7B-Instruct model [187], a sparse

mixture of experts model (SMoE), finetuned for instruction following and released by

Mistral AI. More precisely, we rely on the v0.1 version of its open weights available



via the Hugging Face transformers library. We run the LLM in 4-bit precision with

flash attention to speedup inference.

The prompts used for contrastive concepts. We provide in Fig. 5.6.7 the prompt

used to generate the contrastive concepts CC
L and in Fig. 5.6.8 the prompt used to

predict whether a concept can be seen in an image or not to filter CC
D.

In these prompts, we indicate the inserted input text as {q}. We follow Mixtral-8x7B

Instruct’s prompt template. In particular, we use <s> as the beginning of the string

(BOS) special token, as well as [INST] and [/INST] as string markers to be set

around the instructions.

For the generation of CCL, we also integrate a light post-processing step, ensuring

that all generated lists have a unified format with coma separation. We do not apply

any filtering or cleaning step to the LLM-generated results.

<s> [INST] You are a helpful AI assistant with visual abilities.

Given an input object O, I want you to generate a list of words related
to objects that can be surrounding input object O in an image to help me
perform semantic segmentation.

For example:

* If the input object is ’fork’, you can generate a list of words such as ’["bottle",
"knife", "table", "napkin", "bread"]’.

* If the input object is ’child’, you can generate a list of words such as ’["toy",
"drawing", "bed", "room", "playground"]’.

You should not generate synonyms of input object O, nor parts of input object
O.

Generate a list of objects surrounding the input object {q} without any syn-
onym nor parts, nor content of it. Answer with a list of words. No explanation.

Answer: [/INST]

Figure 5.6.7. Prompt for CC
L contrastive concept generation.

<s> [INST] Please specify whether {q} is something that one can see.

Reply with ’yes’ or ’no’ only. No explanation.

Answer: [/INST]

Figure 5.6.8. Prompt for CC
L visibility prediction.

Example of generated CC
L. We present in Tab. 5.6.6 the example of CCL generated

for Cityscapes dataset. We provide CC for each query q in separate rows.



Query q CC
L
q

road building, tree, car, pedestrian, sky, streetlight, sidewalk, bicycle, parked car, traffic sign
sidewalk building, street, car, tree, people, bike, road, park, sky, lane
building sky, tree, road, car, park, people, lane, fence, house, field
wall door, window, floor, ceiling, painting, light, chair, table, carpet, curtain
fence grass, tree, house, car, path, post, gate, field, flowers, animals
pole building, wire, tree, street, sky, fence, cable, road, banner, light
traffic light road, car, building, pedestrian, sky, streetlight, traffic sign, parking meter
traffic sign road, street, pole, vehicle, building, sky, pedestrian, curb, lane, light
vegetation soil, tree, grass, water, animal, fence, field, sky, rock, sun
terrain tree, sky, building, road, mountain, river, field, fence, vehicle, person
sky tree, building, cloud, sun, bird, airplane, mountain, sea, sunset, cityscape
person bike, road, car, tree, building, park, cityscape, nature, animal, sports equipment
rider bicycle, road, nature, park
car road, tree, building, person, parking
truck road, car, building, tree, parking
bus road, tree, building, sky, person, car, traffic light, bicycle, parking meter, street sign
train track, grass, sky, building, platform, tree, sign, person, car, road
motorcycle road, person, bike, car, traffic, building, nature, parking, city, scenery
bicycle road, tree, person, park, building, grass, basket, helmet, traffic, path

Table 5.6.6. Example of LLM-generated CC
L for Cityscapes.

Part removal via LLM-prompting. We also explore the possibility of removing

suggested contrastive concepts that can be parts of query concepts. Note that in

CC
L, we explicitly do it in the prompt itself (Fig. 5.6.10). Fig. 5.6.9 presents one of

such examples when removing “wheel” from the CC
D of query “bicycle” gives a slight

improvement for MaskCLIP segmentation. However, we do not notice a particular

improvement in the case of other segmentation methods since, typically, they refine

the masks or feature maps to include localization priors. For example, in Fig. 5.6.9,

the second row presents the same example for CLIP-DINOiser (DINOiser), where the

improvement is marginal. Finally, we observe little or no quantitative improvement

when applying part removal filtering on entire datasets. Therefore, we do not include

it in our final method.
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Figure 5.6.9. Part removal. We consider an example from Pascal Context with q = bicycle.
We show the segmentation masks produced by MaskCLIP and CLIP-DINOiser for CCD , as well as for
CC

D when parts of objects are removed (CCD
−parts).



<s> [INST] You are a helpful AI assistant with visual abilities.

Given an input object O, I want you to generate a list of words that are parts
of an object O.

For example:

* If the input object is ’rabbit’, you can generate a list of words such as
’["paw", "tail", "fur", "ears", "muzzle"]’.

* If the input object is ’building’, you can generate a list of words such as
’["door", "window", "wall", "hall", "floor"]’.

Generate a list of parts of the input object {q}. Answer with a list of words.
Do not give any word that is not a part of the input object. No explanation.

Answer: [/INST]

Figure 5.6.10. Prompt for part prediction.



6. Task Adaptation for Foundation Model

Selection and Analysis

In the preceding chapters, we examined the exploitation of off-the-shelf rep-

resentations from Vision-Language Models and their potential integration with

other visual foundation models to achieve efficient downstream task performance,

with particular emphasis on open-vocabulary semantic segmentation. Through

CLIP-DINOiser, we demonstrated that the understanding of the complementary

strengths and limitations of various foundation models can inform the development

of effective task adaptation strategies, simultaneously improving downstream per-

formance while minimizing computational and annotation costs. As we progress

in our investigation, we arrive at a fundamental research question: how can we

systematically evaluate and determine the optimal visual foundation model for

a specific task?

The exploitation of off-the-shelf representations without substantial architectural

modifications or alterations to their representation space allows downstream task

adaptation to serve as an evaluation framework analogous to the linear probing

methodology discussed in Sec. 2.2.3. While linear probing provides an effective evalu-

ation strategy for different image-level and pixel-level tasks, this chapter focuses on

the more complex domain of visual reasoning, specifically visual question answering

(VQA). The inherent complexity of this task stems from its multimodal nature.

Successful solution of the task depends not only on detailed visual scene representa-

tion but also sophisticated language understanding capabilities to process complex

scene-related queries. Furthermore, the necessity of modality fusion introduces

additional complexity to the adapter design. Our objective is twofold: to compare

diverse visual representations using a generic design framework and to ensure fair

comparison across representations, regardless of their architectural differences and

model scales.

Our next contribution proposes a systematic evaluation protocol for visual repre-

sentations in the context of VQA through downstream task adaptation. To enable

rigorous comparison of diverse visual representations, we develop a universal reason-

ing module that accommodates varying input representation dimensions, thereby

ensuring fair comparative studies. This evaluation framework facilitates the system-



atic analysis of differences between visual representations and their task-specific

suitability. Through VQA as an exemplary task, we derive several insights that have

implications for the development of more robust visual representations.

While Sec. 2.2.6 discusses prior work with similar objectives in providing eval-

uation frameworks for visual representations in VQA, our approach differs in its

emphasis on controlled experimentation. We specifically focus on synthetic datasets,

offering more precise control over experimental conditions than the approaches dis-

cussed in Sec. 2.2.6. Our methodology includes a rigorous validation of the adaptation

module’s task suitability through verification using ground-truth scene representa-

tions. This work was first presented at the NeurIPS Workshop in 2022, preceding

the evaluation frameworks discussed in Sec. 2.2.6.

6.1. Introduction

Visual representation learning has gained a lot of attention thanks to advanced

frameworks demonstrating unprecedented results without relying on explicit su-

pervision [15, 48, 21]. On the one hand, classical self-supervised methods [45, 191,

22, 15, 192] producing localized features (i.e., features that densely correspond

to regions of the image) are exhaustively evaluated on standard tasks like image

classification or object detection where they perform on par with the supervised

ones. Although highly popular, these features provide an unstructured representa-

tion of a scene, which impairs their generalization capabilities [193]. On the other

hand, more recent unsupervised systems [194, 195, 196, 197] aiming at learning

object-centric representations (i.e., each feature is associated with an object in the

image) are typically evaluated, for instance, segmentation where benchmarks are

saturated. While the object-centric representations enforce the decomposition of

a scene into objects, yielding an overall more structured representation, they are still

limited to synthetic datasets [198]. Motivated by the recent advancements in visual

representation learning, in this work, our goal is to investigate how well off-the-shelf

features extract meaningful information about the objects in a given image.

Because features are usually implicit, finding explicit mappings between the

latent space and the corresponding attributes is typically ambiguous and difficult.

We thus propose to evaluate the feature ability to model objects through the perfor-

mance of a reasoning module trained for different visual reasoning tasks. We find

visual reasoning a perfect testbed to assess the quality of visual representations as

it requires a holistic visual understanding [199]. However, setting various image

representations side by side in a unified framework that enables a fair comparison

is not straightforward. To tackle this problem, we design a new evaluation protocol
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that is based on a simple transformer-based reasoning module learned on top of

the frozen visual features to be evaluated. Similarly to feature evaluations that

use shallow networks for predictions to decouple visual extraction from evaluation,

we build a restricted reasoning module with a limited capacity in two ways. We

first methodically find a reasoning module with a minimal computational capacity

necessary to obtain high performances with perfect image representation given by

the ground truth. Second, we limit the size of the reasoning module input to a fixed

number to ensure fair comparisons among features of different sizes. Finally, we

provide results in low-shot evaluation setups, which we argue are better suited to

identify noisy representations yielding spurious correlations. Contrary to existing

protocols [200, 201], our VQA evaluation enables us to compare off-the-shelf features,

either densely extracted local features or object-centric representations.

Based on the protocol we make the following findings. Although such representa-

tions demonstrate excellent results in their dedicated benchmarks, their reasoning

performances in our constrained setup are far from the ones obtained with ground

truth object descriptions or from state-of-the-art performance obtained using super-

vised features. This suggests that off-the-shelf features do not accurately represent

all the scene information necessary to solve the visual reasoning task. Secondly,

we find that object-centric features are better suited for visual reasoning than

local features. Although this is conceptually expected, we provide an empirical way

to exhibit this behavior. Finally, we demonstrate that low-shot evaluation setups

prohibit learning the correct reasoning patterns across all visual representations.

However, object-centric representations seem to be better at preventing learning

spurious correlations than localized ones.

To summarize our contribution is as follows:

• We propose to study visual features’ suitability to address complex reasoning

by studying their performance on the VQA task.

• To allow for fair studies between different representations, we introduce a

specific memory adaptation module and a restricted-size reasoning module.

• Our framework allows us to make several findings on off-the-shelf visual repre-

sentations for visual reasoning.

6.2. Related work

In this section, we first briefly cover the relevant works on visual reasoning, with

an emphasis on image representation and reasoning. We then give an overview of

generic representation learning methods, their capabilities at solving other tasks,

and their relevance to visual reasoning.
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6.2.1. Visual question answering (VQA)

Good visual representations are typically used in end-to-end supervised VQA

systems to achieve high accuracy [202, 76, 77]. Although most methods use Convolu-

tional Neural Networks (CNNs) typically pre-trained on ImageNet [6] to extract local

features, there are two different approaches to exploit them, leading to different levels

of semantic structure in the visual representations. One is the grid-level approach,

where extracted local features uniformly span a whole image [203, 204, 205, 206]

and as such are used in the reasoning process to provide local visual information.

Another approach is to use object-level representations, first introduced in [207],

where the idea is first to detect objects and salient regions in an image and then only

use features corresponding to those regions. Although very effective [208, 209], such

an approach requires a pre-trained object detector and bounding box annotations for

the supervision, which is not always feasible in real-case scenarios. Recently, [210]

proposes 3D prototypical networks and demonstrates their effectiveness on 3D

datasets for Visual Reasoning by disentangling RGB-D images into objects, their 3D

locations, sizes, 3D shapes, and styles. However, these visual representations are

trained, or at least fine-tuned, on the VQA objective and are thus specialized to solve

this task. In contrast, in this work, we want to evaluate to what extent it is possible

to answer simple visual reasoning questions using unspecialized features that have

not been trained for this specific objective. Finally, the orthogonal to our line of

works discards the visual representation part of VQA by using off-the-shelf image

captioners to map an input image to the textual space and performing reasoning in

the unimodal space, typically using large language models (LLM) [211, 212].

From the reasoning standpoint, the large body of proposed methods for VQA

relies on dedicated natural-language parsers, which determine a sequence of logical

steps to perform to give an answer to a particular question [213, 209, 214, 215].

The reasoning steps are carried out by small neural module networks specifically

designed for the task, which are usually trained with strong supervision by using

functional program annotations. Recently, self-attention mechanism [50] proved

successful across many applications, arising from natural language processing,

through vision [37] up to multimodal learning [216, 13, 217]. Moreover, the literature

also points out that they are suitable for symbolic computations [218, 219, 220]. [221]

leverages the self-attention mechanism in spatiotemporal reasoning, demonstrating

at the same time the applicability of unsupervised object-centric representations for

reasoning. Finally, [222] proposes a transformer-based architecture for unified object

detection and reasoning, which does not use any functional program supervision but

is trained to detect objects that are required for performing intermediate reasoning

steps, hinting that self-attention may be sufficient to solve simple visual reasoning



questions. In this work, we also leverage self-attention as the building block for

the reasoning part of our work. We show that it is indeed sufficient to obtain good

accuracy when used with well-structured visual representations.

6.2.2. Generic representation learning

The common approach of reusing representations pre-trained on ImageNet [6]

proved successful across multiple vision tasks [71]. On the other hand, recent ad-

vances in self-supervised learning (SSL) [45, 191, 22, 15, 192] have shown that learn-

ing image representations without labels may yield better, more generalizable repre-

sentations for downstream tasks. As the first self-supervised approaches relied on dis-

criminative learning [45, 191], they used a significant amount of computations due to

large batches and memory banks requirements [192]. Less computational-intensive

methods in terms of training have been recently proposed based on self-distillation.

Particularly, [22] uses two neural networks, referred to as online and target net-

works, that interact and learn from each other. DINO [15] improves on this idea and

shows that this training strategy, combined with ViT [37] as an architecture, gives

high-quality image representations suitable for segmentation tasks. In this work, we

examine the effectiveness of self-supervised features without explicit object structure,

DINO in particular, in terms of their ability to provide effective representations for

visual reasoning.

The significant body of recent works shows the effectiveness of learning visual

representations through natural language guidance, which can be considered an-

other form of self-supervision. Particularly, CLIP [13] and ALIGN [24] employ a

contrastive similarity learning approach to match images with their associated

captions and leverage a large dataset of image-text pairs from the Web for training.

Text-aligned representations proved useful in many downstream tasks such as image

captioning [223], image retrieval [224], and open vocabulary semantic segmenta-

tion [30, 29]. In our work, we study the effectiveness of visual representations in

multimodal space for visual reasoning, particularly CLIP.

In parallel to popular local features extracted on a dense grid, recent works aim at

learning features that can explicitly be associated with objects contained in the given

image. These unsupervised approaches can be split into three categories. A first

category of methods estimates latent variables which best encode pixel assignments

to a fixed number of image components [225, 226, 194, 195, 227, 196]. A second

category of methods leverages spatial attention [228] to extract image patches

containing objects [229, 230, 231, 232]. The third category of methods explicitly

learns a dictionary of RGBA images representing canonical objects called sprites,

that are positioned and composed to generate the image [197, 233]. In this work,



we evaluate two different approaches from the first and third categories, namely

Slot Attention [196] and DTI-Sprites [197], which demonstrated state-of-the-art

results in terms of unsupervised instance segmentation. Since these features natu-

rally uncover the object structure in the scene that seems to be critical for visual

reasoning, without using explicit supervision, we investigate how they perform in

visual reasoning problems and compare them to the unstructured representations

described previously.

6.3. Evaluation framework
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Transformer Decoder
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Figure 6.3.1. Our evaluation framework overview. Given an input question and the
corresponding input image, we first extract text tokens Q as well as visual tokens V, which
are constrained to have a fixed size through a module called memory adapter. These tokens
are then concatenated along the sequence dimension and fed to the reasoning module.
Finally, we decode the answer using several heads attached to the reasoning module and a
specific head given the predicted question type. During training, only the parameters of the
reasoning module are trained (above a dashed line), while the rest of the pipeline remains
frozen.

In this section, we introduce our framework to evaluate image representations

on the visual reasoning tasks. We first provide the main motivation for this work.

We then give a general overview of the pipeline and move further with the details

on how we adapt different visual representations for this study.
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6.3.1. Motivation

Our goal is to examine to what extent different off-the-shelf image representa-

tions are capable of encoding the information needed for reasoning. Particularly,

we are interested in investigating whether the visual features proven to be very

effective for classical vision tasks are suitable for basic reasoning. We examine

popular off-the-shelf features that we split into two groups: (i) the classical dense

sets of features localized on a grid-like structure, which we refer to as LOC, and (ii)

object-centric features that can be associated with objects in the scene, denoted here

as OBJ . In the case of learned local features, we further distinguish 2 types of learn-

ing processes. We examine the standard approach of transferring features obtained

from backbones pre-trained for classification on ImageNet [6], which we denote by

IN . We also study features that are obtained through more recent self-supervised

learning frameworks, denoted by SSL.

Examining such various visual representations rigorously imposes a challenge on

the design of a fair evaluation protocol. To make features comparable, we introduce

a restricted reasoning module that is limited by both a small computational capacity

and a fixed-size input, which we will refer to as the reasoning module memory in the

following. We cover these evaluation constraints in subsection 6.3.3.

6.3.2. Pipeline overview

We build our pipeline upon the disentangling reasoning from the vision and

language understanding paradigm [213]. Our framework serves as plug’n’play for

unimodal encoders and consists of 3 separate modules: text, vision, and reasoning

respectively. First, given the question-image pair, we use frozen text and visual

encoders to extract representations and map them to a common multimodal space.

Then, the concatenated features are fed to the reasoning module predicting the

answer. An overview of our pipeline is presented in Figure 6.3.1.

Text module

Since the focus of this work is evaluating image representations, we use a prede-

termined and fixed text encoder to ensure a fair evaluation of the visual features. In

this work, we use the RoBERTa language model introduced in [234] as the fixed text

encoder. Note that this could be any other language model that produces a question

representation as a sequence of text tokens.

Visual module

The visual module maps an input image to a set of visual tokens in a two-step

process. First, a visual encoder extracts an image representation, which is seen as a



sequence of features. Then, to make sure that all features are comparable, we design a

module called Memory adapter whose goal is to convert the extracted representations

to a fixed-size input. We cover both processes in detail in subsection 6.3.3.

Reasoning module

Inspired by the state-of-the-art model MDETR [222], our reasoning module is

a transformer encoder-decoder architecture [50] which operates on a sequence of

text tokens Q and a sequence of visual tokens V. To allow our reasoning module to

distinguish between modalities, we add to each token a modality-specific segment

embedding which is a learnable parameter, in a similar fashion to practices in natural

language processing. Additionally, in the case of local features, we add a learned

positional encoding to incorporate spatial information, as they do not inherently

have such information.

First, we forward the concatenated sequence of text and visual tokens through a

transformer encoder with NT layers with a NH number of heads in the self-attention

mechanism. Then, we apply the same number of layers and heads of the transformer

decoder to predict the answer. Following MDETR [222], we use several heads special-

ized in specific types of questions. However, unlike them, we move the question type

head and pool it from the output CLS token of the text encoder, as our preliminary

studies showed it prevents overfitting to the language signal.

Training strategy

Compared to end-to-end supervised VQA pipelines, we train our reasoning module

using question-image-answer triplets without any external supervision. Concretely,

given a question-image-answer triplet (q, i,a) we predict the answer type ŷt as well

as the corresponding answer encoded by ŷb, ŷcnt or ŷattr respectively associated to

True/False, count and attribute questions. Therefore, our final loss is defined as:

L total = L t +Lb +Lcnt +Lattr, (6.1)

where L t, Lcnt, Lattr denote cross entropy losses between the ground truth yt, ycnt, yattr

respectively, and the predictions ŷt, ŷcnt, ŷattr, whereas Lb is a binary cross entropy

loss between yb and ŷb.

6.3.3. Evaluation constraints

Drawing inspiration from standard representation learning evaluations, we

design a restricted reasoning module taking fixed-sized features as input to assess

their quality in comparable setups. We do so by designing a minimal reasoning



transformer using ground truth information and by introducing a visual memory

adapter that ensures a fixed-sized input memory to the reasoning module. Intuitively,

shallow evaluation networks prevent by design the evaluation part from performing

the representation learning task (e.g., considering raw pixels as features and a

deep classification CNN as an evaluation module is absurd), and the visual memory

adapter allows us to make features of different sizes comparable.
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Figure 6.3.2. Accuracy on CLEVR against the number of parameters in the rea-

soning module when using perfect visual information. Below a minimal complexity in the
reasoning module, even having perfect visual information is insufficient to solve the VQA
task.

Restricted reasoning module

We propose to use the vectorized ground-truth description of a scene to find

a reasoning module with minimal complexity that solves the task using these

ground-truth features. In practice, we vectorize the information about each object’s

presence, position, and properties and use the vector as a visual token V instead of

extracting visual representations with the visual encoder. We then find the minimal

set of hyperparameters of the transformer that yields a high-performance reasoning

module.

More precisely, we methodically use a grid search to optimize for the number

of layers NT , the number of heads NH, and the dimensionality of the input size

vdim. Figure 6.3.2 shows some of the configurations of hyperparameters and their

associated accuracy. As we can see, there is a minimal computational capacity below

which the task is unsolvable even with perfect visual information. We thus set the

capacity of our reasoning module to that minimum, i.e. NT = 3, NH = 4, vdim = 128.



Visual memory adapter

To ensure comparability, the reasoning module should keep a fixed-sized input

memory across all representations. To fix the input memory size of V, we apply a

two-step process. First, depending on whether the visual encoder is OBJ or LOC,

the sequence length Nv may differ. Thus, we restrict the Nv to be roughly equal to

the maximum number of objects in a scene. Let us assume we have a K maximum

number of objects that can appear in a scene. Therefore, if the Nv > K , which is the

case for LOC due to the grid-like structure of the local features, we apply adaptive

average pooling on the features until we roughly match a size of K .

Second, to ensure the reasoning module operates on compact representations

of similar sizes in memory, we constrain the dimension of the visual tokens. Let

us assume dmin
v is the minimum visual token dimension needed to solve the task,

which corresponds to a number of objects’ properties and their respective positions

in a scene for relational reasoning. If dv > dmin
v , we compress visual tokens using

Principal Component Analysis (PCA) and decrease the dimensionality to match

dmin
v .

Therefore, we define the minimum memory size M required to solve the task as:

M = K ·dmin
v (6.2)

The memory adapter converts the output of the visual encoder to a fixed memory

size within a few orders of magnitude of M by relaxing the dmin
v constraint since visual

features are not expected to attain perfect compression of the visual information.

This, in turn, implies a fixed input size for the reasoning module since the text

encoder is shared in the evaluation.

6.4. Experiments

In this section, we present the results of our comparative study. We first give an

overview of implementation details, including the evaluation datasets and visual

encoders used, and then move on to experiments with constrained memory or training

size.

6.4.1. Datasets

We conduct our analysis on 2 CLEVR-like datasets: CLEVR VQA [235] - a stan-

dard synthetic benchmark for Visual Question Answering and CLEVR-Math [236].

CLEVR world consists of 3D objects in 3 different shapes, 8 different colors, 2 sizes,
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and 2 materials. Thus, there are 4 properties to encode in the visual representation.

Moreover, the maximum number of objects in a scene K is 10. Therefore, the mini-

mum memory size of visual tokens M = 10×7 for 10 objects, 4 properties, and 3D

position (x,y,z).

In CLEVR VQA, for each image, there are associated questions that ask about

various aspects of the scene. These questions are designed to assess different levels

of reasoning, including object attributes, spatial relationships, counting, and com-

parisons. Each question comes with a corresponding answer. The answers can be

single-word or numbers that provide the solution to the posed question based on the

information present in the image.

CLEVR-Math is an extension of CLEVR consisting of simple math problems

involving addition/subtraction, represented partly by a textual description and partly

by an image illustrating the scenario. The text describes actions performed in the

scene that is depicted in the image. The difficulty of the tasks stems from the fact that

the question posed may not be about the scene in the image but about the state of the

scene before or after the actions are applied. Solving these word problems requires

a combination of language, visual, and mathematical reasoning. Note that the

questions in the CLEVR-Math dataset concern only one type of answer; therefore, we

keep only the count question type head. For more details on CLEVR-Math adaptation,

see Sec. 6.6.5.

The advantage of synthetic CLEVR-based datasets is the presence of ground-truth

scene graphs, which fully describe objects and their relationships in the scene. We

use scene graphs to curate the design and training procedure of our reasoning

module, which would not be possible without the ground truth.

6.4.2. Implementation details

For our comparative study, we choose popular image representations trained

with various levels of supervision. Models are always frozen during training and

used solely as feature extractors.

Dense local features

We use features extracted from two popular architectures: convolutional-based

ResNet-50 [36], and the transformer-based ViT proposed in [37]. For ResNet-50, we

use the local features after the last convolutional layer right before the global average

pooling, whereas for ViT, we use the output tokens of the last layer corresponding to

image patch position (i.e., the CLS token is not used). To study the influence of the level

of supervision in image backbones, in the case of ResNet-50, we evaluate the local

features trained in a supervised manner using the classification task on Imagenet,



denoted LOC-IN , and self-supervised DINO features, denoted LOC-SSL. We also

account for localized features trained with language supervision by evaluating the

CLIP image visual encoder. We denote CLIP features as LOC-CM. We use the

smallest model available, which is ViT-B, and check the performance in 2 different

configurations, with input patches of size 16 and input patches of 32. For DINO, we

report the results for ViT-S architecture as our experiments with ViT-B trained with

DINO supervision showed that the larger architecture results in lower performance.

For more details, see the Supplementary Material. To encode the position of local

features, we use the corresponding 2D position in the feature map for ResNet-50

features and the 2D position of the corresponding patch for ViT features.

Object-centric representations

To evaluate the performance of unsupervised object-centric representations, we

consider two methods: Slot Attention [196] and DTI-Sprites [197], which demon-

strated state-of-the-art segmentation results on the recent CLEVRTex [198] bench-

mark. We first train both methods on the CLEVR dataset - which does not require

any supervision - and use pre-trained models as feature extractors. More details on

the training process can be found in the supplementary material. In Slot Attention,

we use the slots right before the decoder part as features. DTI-Sprites is an explicit

OBJ representation. Thus, the features correspond to predicted transforms (color,

scale, position, and prototype id) for each object in a scene. We refer the reader to

the original paper for further details [197]. More details on feature adaptation can

be found in Sec. 6.6.2.

Memory adaptation

Since all considered representations are much larger than M, we consider 2

memory sizes in our protocol: (i) a total memory of size 100, denoted M1, which

approximates the minimum M = 10×7 for CLEVR dataset, and (ii) a total memory of

size 1000, M2, to account for richer representations than the bare minimum required

for solving the VQA task. For completeness, we also report results without any

memory adaptation, a setup denoted by M∞.

In the case of LOC, we follow standard practices for normalization and input

image size (224×224), whereas, in the case of OBJ , we follow their standard practices

and use images of size 120×160. This implicitly means that OBJ features have access

to fewer details than LOC features, but this is compensated by their intrinsically

more precise account of spatial information.

In Tab. 6.4.1, we summarize the parameters used in both the spatial pooling



method image size feature size (M∞) M1 M2

GT - 10×7 10×10 10×100
DTI-Sprites 120×160 10×10 10×10 10×100
Slot Attention 120×160 11×64 11×9 11×90
ResNet-50 224×224 49×2048 16×6 16×62
ViT-S-16 224×224 194×384 16×6 16×62
ViT-B-16 224×224 194×768 16×6 16×62
ViT-B-32 224×224 49×768 16×6 16×62
Raw 192×192 9×12k 9×11 9×111

Table 6.4.1. Evaluation setups for different memory regimes. We conduct our studies
in 2 memory regimes, M1 and M2. We also provide the raw feature size (corresponding to a
memory regime M∞) to highlight the extent of compression and expansion applied at the
adaptation stage.

and the dimension reduction strategies described in Sec. 6.3.3 to fit the 2 memory

constraints for each visual encoder.

comp query comp
Method count exist num attr attr

M1 memory regime

GT 99.8 99.9 99.5 99.2 100.0
OBJ DTI-Sprites [197] 72.6 87.8 84.8 84.3 82.4
OBJ Slot Attention [196] 50.8 70.8 70.1 58.3 55.8
LOC-SSL DINO ResNet-50 51.0 72.6 71.4 58.7 61.2
LOC-IN ResNet-50 47.3 69.3 69.7 56.2 56.0
LOC-CM CLIP 47.8 67.7 69.3 50.4 54.4
LOC-SSL DINO ViT 45.2 66.9 69.2 46.3 53.1
LOC Raw 44.9 64.1 67.9 39.8 51.1

M2 memory regime

GT 100.0 100.0 99.8 99.1 100.0
OBJ Slot Attention [196] 85.1 95.0 92.8 93.1 92.6
OBJ DTI-Sprites [197] 72.7 88.1 86.2 84.6 82.9
LOC-SSL DINO ResNet-50 71.4 88.8 82.9 85.7 84.7
LOC-SSL DINO ViT 66.0 86.5 79.1 80.7 81.0
LOC-IN ResNet-50 66.6 85.9 81.5 83.0 80.2
LOC-CM CLIP 60.4 82.3 78.8 78.7 74.4
LOC Raw 44.5 64.8 69.0 43.9 51.2

MDETR [222] 99.3 99.9 99.4 99.9 99.9

Table 6.4.2. Results on the CLEVR VQA dataset in 2 memory size regimes. We report
scores on the validation set with a detailed split by the question type. We report average
accuracy on the validation set.



6.4.3. Quantitative results

In this experiment, we study the effectiveness of different visual features in

solving 2 reasoning tasks. We report the question-specific categorical accuracy in

Tab. 6.4.2 on CLEVR VQA and the overall accuracy in Tab. 6.4.3. We also report the

overall accuracy on CLEVR-Math dataset in Tab. 6.4.4. For completeness, we report

results without any memory adaptation in a setup denoted by M∞. As a sanity check

to investigate how much visual processing our reasoning module is capable of, we

also experiment with compressed raw image patches as visual tokens, denoted as

Raw in the method column.

Method M1 M2 M∞

OBJ DTI-Sprites [197] 81.8 82.2 81.8
OBJ Slot Attention [196] 58.9 91.4 91.4

LOC-SSL DINO ResNet-50 60.4 82.4 89.2
LOC-IN ResNet-50 57.1 79.0 87.7
LOC-CM CLIP-32 56.6 70.9 94.4
LOC-CM CLIP-16 54.6 74.0 91.3
LOC-SSL DINO ViT 52.1 78.4 89.8

Table 6.4.3. Overall results on CLEVR VQA in 2 memory size regimes and with no
memory restriction. We report average accuracy on the validation set.

Method M1 M2 M∞

OBJ DTI-Sprites [197] 57.3 57.3 57.3
OBJ Slot Attention [196] 52.9 74.0 74.0

LOC-SSL DINO ResNet-50 50.4 60.4 69.9
LOC-IN ResNet-50 50.1 59.0 68.8
LOC-CM CLIP-32 51.6 61.6 81.8
LOC-SSL DINO ViT 51.1 62.4 79.1

Table 6.4.4. Overall results on CLEVR-Math in 2 memory size regimes and with no
memory restriction.

At comparable size, are visual features as good as a ground-truth

representation?

We focus here on the M1 setup, which ensures results comparable to the one

obtained using ground truth. In the case of CLEVR VQA dataset, it is clear that all



of the methods except for DTI-Sprites fail to attain an accuracy significantly different

from the Raw baseline. This suggests that they do not encode visual information in

a compact way that is comparable to perfect visual information. For CLEVR-Math

dataset DTI-Sprites also performs the best out of all compared visual features,

however, overall the scores are much lower compared to the VQA task, which indicates

that the math reasoning task itself is much more difficult. We attribute the overall

best performance of DTI-Sprites in this very restricted memory size regime to its

inherent explicit representation nature. The original memory size of a DTI-Sprites

visual token is the closest to the ground truth as the method explicitly encodes all

the visual properties needed to fully reconstruct a scene. This aspect plays in its

favour in this experiment.

Are object-centric representations more suitable than localized ones for

this task?

We compare representations at similar memory regimes M1 and M2 in the VQA

task. For the exist questions, OBJ features are outperforming LOC ones. This is

expected and quantitatively indicates that structuring the scene into a set of objects

is much more suitable for reasoning. When it comes to comp num, query attr and

comp attr, Slot Attention performs significantly better compared to other methods.

We argue this can be attributed to the object-centric nature of the representation

that facilitates comparisons among objects and focuses on describing their properties.

Note that, even though OBJ were trained on CLEVR contrary to LOC features, we

tried fine-tuning DINO features on the CLEVR dataset but obtained worse results.

We hypothesize they are not suited for synthetic datasets like CLEVR, which is

smaller and much less diverse than standard large-scale SSL datasets. The experi-

ments on CLEVR-Math reveal a similar tendency of object-centric representations

performing better in M1 and M2.

Do visual representations contain sufficient information for solving VQA?

In the more relaxed memory constraint setup M2, all the studied visual rep-

resentations enable the reasoning module to learn to solve VQA to some extent,

with Slot Attention clearly outperforming the rest. The gap between Slot Attention

and localized features is less significant in the case of no memory restriction setup,

with CLIP features yielding the overall best performance. This suggests that even

if the visual information is not encoded in a way that can be heavily compressed,

these features contain significant semantic information. Interestingly, the Raw

baseline does not lead to significant accuracy, which validates that our setup does

not allow the reasoning module to perform visual processing and also that all visual



representations extract some meaningful information from the image, albeit not in

a compact way.

Does image-language pretraining yield better representations for visual

reasoning?

Looking at the results with no memory restriction on both datasets, CLIP features

perform the best among LOC as well as OBJ . However, we observe a significant

CLIP’s performance drop compared to other visual features when given the memory

restriction. This may indicate that text-image space in CLIP, through accommodating

the text alignment, is less compact. We leave verification of this hypothesis for future

work. Additionally, to check the influence of the language model, we run experiments

with the original CLIP text encoder. The results in Tab. 6.4.5 indicate that using an

aligned CLIP text encoder yields worse results compared to RoBERTa in all memory

regimes and even when no memory restriction is given. This result holds for all

types of questions. We attribute this observation to the fact that CLIP was trained

on short textual prompts, whereas questions in CLEVR are complex and mainly

built of multiple sentences, thus requiring long sequence modeling.

Method M1 M2 M∞

CLIP-16 + RoBERTa 53.2 74.8 91.3
CLIP-16 + CLIP Language Encoder 50.8 73.8 76.8

Table 6.4.5. The study of the influence of the text encoder on the CLIP performance on
the CLEVR VQA dataset. We report average accuracy over all the questions in the validation
set.

Finally, there is still a significant gap between off-the-shelf features and the

state-of-the-art MDETR [222], which can obtain performances comparable to having

perfect visual information.

6.4.4. Low-shot evaluation study

We study the effectiveness of visual features in solving VQA with a limited

number of samples. The idea behind this experiment is to test the generalization

capacity of the features as we argue that accurate and discriminative features

should generalize better to unseen samples. Besides, having a small training set

forbids the reasoning module to brute-force memorize a significant portion of the

combinations of questions/scenes and answers and thus uncovers the minimum

training set size needed to learn reasoning patterns. Fig. 6.4.1 shows a comparison

for varying fractions of the training set for both the M1 and M2 setups.
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Figure 6.4.1. Results of the low-shot VQA experiments on CLEVR VQA dataset. We
visualize the results for 2 memory size regimes, M1 (top) M2 (bottom), and the visual encoders
with the best overall performance.

Are visual representations suited for low-shot reasoning?

We observe that starting at 20% of the full training set and with perfect visual

information corresponding to the ground truth, it is possible to infer reasoning pat-

terns. However, at this training set size, none of the considered visual representations

enables visual reasoning, regardless of the memory constraint.

Which visual representations are better suited for learning to reason from

a few examples?

Looking at the M1 setup, we can see that DTI-Sprites is able to obtain higher

accuracy with much fewer examples than the other methods, whereas all achieve

comparable very low training losses. This indicates that explicit representations

enable faster discovery of relevant information than implicit representations.

Do object-centric representations prevent learning spurious correlation?

As we can see from the M2 results in Figure 6.4.1, both OBJ and LOC represen-

tations exhibit similar behavior when the memory is less constrained. Given that

they all reach similar very high training accuracy, this indicates that structuring

the representation into objects may not be as good at preventing learning spurious

correlations as is the distinction between explicit and implicit representations.

6.5. Conclusions

We investigated to what extent off-the-shelf representations model the infor-

mation necessary to perform visual reasoning. To that end, we designed a new

feature evaluation protocol based on VQA, which aims at disentangling as much as
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possible the vision from the reasoning part. Indeed, we constrained the computation

capacity as well as the visual memory size to decouple representation learning from

evaluation and make sure features are comparable. Using our evaluation protocol,

we make three key findings: (i) off-the-shelf visual representations are far from

being able to structure visual information in a compact manner, (ii) object-centric

representations seem to be better at encoding the critical information necessary

for reasoning, and (iii) limiting the training set size has a dramatic impact on the

learning of spurious correlations for all visual representations regardless of their

type.

While these findings contrast with the excellent performances that off-the-shelf

features usually obtain in simpler vision tasks, they also show that having represen-

tations that encode object properties is a promising first step towards unsupervised

visual reasoning. Finally, once scaled to a real-world setting, object-centric represen-

tations could provide a framework for learning generalizable visual features.

6.6. Appendix

6.6.1. Visual encoders extraction and adaptation details

Dense local features. We use features extracted from two popular architectures:

convolutional-based ResNet-50 [36] and the transformer-based ViT proposed in [37].

For ResNet-50, we use the local features after the last convolutional layer right

before the global average pooling. In contrast, for ViT, we use the output tokens of

the previous layer corresponding to the image patch position (i.e., the CLS token is not

used). To encode the position of local features, we use the corresponding 2D position

in the feature map for ResNet-50 features and the 2D position of the corresponding

patch for ViT features.

For ResNet-50 pre-trained on ImageNet, we use model weights available in

torch-vision package1. For both DINO ResNet-50 and DINO ViT, we use weights

provided in the original DINO repository 2. For CLIP features we use implementation
3 from HuggingFace library [237].

Object-centric representations. To evaluate the performance of unsupervised

object-centric representations, we consider two methods: Slot Attention [196] and

DTI-Sprites [197], which demonstrated state-of-the-art segmentation results on the

recent CLEVRTex benchmark [198]. We first train both methods on the CLEVR
1 http://pytorch.org/vision/stable/index.html
2 http://github.com/facebookresearch/dino
3 http://huggingface.co/transformers/clip
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dataset - which does not require any supervision - and use pre-trained models as

feature extractors.

In Slot Attention, we use the slots right before the decoder part as features. We use

the implementation available in CLEVRTex benchmark repository 4. We train the

model on the original CLEVR VQA dataset, preserving the original train/validation

splits. To keep a similar resolution as in the case of the multi-object segmentation

task, we feed input images resized to 120×160. We do not apply any center cropping

to make sure all the objects in the scenes are clearly visible. Following [198], we

use 11 slots. We also maintain the original learning rate, batch size, and optimizer

settings, as well as 500k iterations of training.

We use original implementation of DTI-Sprites 5. Similar to Slot Attention, we

train the model on images resized to 120×160 with no center cropping. To account

for the smaller resolution compared to the original multi-object segmentation task,

we increase the representation expressiveness in the backbone by changing adaptive

average pooling to 4×4, instead of the originally proposed 2×2. We train the model

with 10 layers, corresponding to a maximum number of objects in the CLEVR dataset.

We also increased the number of prototypes to 8 since we observed that the training

did not lead to obtaining a complete set of prototypes in the dataset when using

only 6. We train the model with the original batch size and learning rate for 760k

iterations.

6.6.2. Memory adaptation details

To match the memory constraints in 2 setups for all visual encoders, we use

PCA implementation in Scikit-learn [238]. We first extract features for training and

validation sets and apply PCA offline.

6.6.3. Training details

We implement our framework in PyTorch [239]. For the text encoder, if not

indicated otherwise, we use RoBERTa 6 model available in HuggingFace library [237].

In the case of all visual encoders, we follow the same training strategy. We train

the reasoning module for 40 epochs with a batch size of 64. We use adamW [240]

optimizer with a learning rate of 1e-4, weight decay of 1e-4, and linear warmup for

the first 10k iterations. We then decrease the learning rate at epochs 30th and 35th

by a factor of 10.

4 http://github.com/karazijal/clevrtex
5 http://github.com/monniert/dti-sprites
6 http://huggingface.co/roberta-base
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6.6.4. DINO ViT architecture comparison

We provide the results for 2 different DINO ViT architectures (small - S, base -

B) in Table 6.6.1 alongside the original feature size and a number of parameters of

each model. We use 16 patch-size versions in both cases. We observe a significant

performance decrease when using the larger model, even when no memory restriction

is performed. When comparing the same architecture trained with CLIP (CLIP-16

in Table 6.4.3), we note that the reasoning module should be able to learn from a

descriptor of such size. We, therefore, conclude that DINO-ViT-B features, which

proved useful for object segmentation, are not as efficient in reasoning over scenes

with multiple objects.

method # params feature size M1 M2 M∞

DINO ViT-S 21M 384 52.1 78.4 89.8
DINO ViT-B 85M 756 53.5 69.7 72.8

Table 6.6.1. DINO ViT performance comparison on CLEVR VQA dataset.

6.6.5. CLEVR-Math experiments

Here, we explain the modifications in our framework for CLEVR-Math dataset.

CLEVR-Math is a CLEVR-like dataset that introduces a task of mathematical

reasoning on multi-modal input. The questions concern only numerical reasoning

and therefore require only count answers. To accommodate this task, we simply

remove all the heads in our reasoning module while keeping the count head. We

also apply the procedure of finding the restricted reasoning module, as described

in 6.3.3 and find optimal hyperparameters for CLEVR-Math to be: NT = 2, NH = 4,

vdim = 128, at which with perfect visual information our reasoning module scores

99.9% overall accuracy.



7. Task adaptation in Real-world Scenarios

In our investigations so far we have demonstrated the adaptability of visual

foundation models across different downstream tasks, reducing both human anno-

tation requirements and computational overhead. We now examine the practical

implications in real-world contexts. The final part of this thesis explores whether

visual foundation models can successfully address complex real-world challenges.

One critical problem in real-world applications is content personalization. This is

particularly evident in web platforms, where users expect tailored recommendations.

The ability to tailor content to individual user preferences and behavioral patterns

has evolved from a desirable feature to an essential component to maintain user

engagement and satisfaction across digital services. This challenge is particularly

relevant for Booking.com, an online travel agency that aggregates accommodation

properties globally. A crucial aspect of the platform is the effective presentation of

properties, where the goal is to optimize the information presented to users search-

ing for accommodation options. This includes creating visual previews comprising

selected images from larger collections—summaries that significantly influence

users’ decision-making processes. We show examples of such previews in Fig. 7.0.1.

Figure 7.0.1. Examples of property pages on Booking.com

In this chapter, we discuss some practical aspects of adapting a Vision-Language

Model to personalize image collection summarization. While traditional approaches

to this task focus on creating concise visual summaries through subset selection, web

platforms face an additional complexity: accommodating diverse user preferences

and priorities when viewing identical content.



Gathering annotations for such a personalization task could be particularly

costly. That is why, in our work, we seek solutions with the data available at hand

to avoid a tedious annotation process. Booking.com users can rate properties and

share their past experiences with hotels through textual reviews. We leverage this

information to personalize summaries for future users of the platform. We do this

by identifying key aspects that matter to particular user groups in properties and

including those insights when selecting subsets of images to present. Our approach

employs a proprietary VLM, which is a variant of CLIP, to establish connections

between visual content and textual user feedback. As a result, our cross-modal

strategy creates more relevant and personalized visual summaries without requiring

additional manual annotations.

7.1. Introduction

Visual content is one of the key aspects when evaluating and deciding upon

a place to stay on the Booking.com platform. Throughout their journey, platform

users browse through visual content for four main reasons: (1) To get an accurate

and realistic idea of what to expect, (2) To assess the quality of the property, (3) To

build trust and remove doubts that they are making the right booking decision, (4) To

look for a content that matches their travel intent. When looking for their next trip,

users might be overwhelmed by the amount of information they are exposed to, both

visual and textual. Image galleries can contain up to hundreds of images. Hence, we

aim to focus the platform’s users on the visual content that is most relevant to them,

given their current personal context. We achieve that by summarizing each property

with a subset of visually informative, high-quality, segment-personalized images.

Most of the works in the image collection summarization area focus on a generic

summarization problem, where the main objective is to select a diverse set of images.

Only recently, some of the efforts have been made in a so-called guided summa-

rization [241], where the aim is to get a diverse yet representative subset of images

corresponding to a specific query. In our work, personalization can be seen as a

variant of a query-based approach. However, the queries are not explicit. User

intents can not easily be translated into specific queries, making personalized image

gallery summarization more complex. In this work, inspired by recent advances

in multimodal learning, we solve the above-mentioned challenge and develop a

method for personalized image collection summarization with textual guidance. We

focus on entire groups of users, which we further refer to as user segments. We

leverage millions of reviews corresponding to properties on the Booking.com platform

for enhanced user segment personalization. We do that by extracting key topics
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mentioned in the reviews, and since they significantly differ across segments of users

(see Fig. 7.1.1) we adjust the image selection accordingly. As the main challenges of

our task, we identify the following:

Personalization modeling. It is not apparent how to obtain the personalization

data for our task and avoid costly annotations. Therefore, we focus on the entire

segments of users and leverage the textual reviews with the metadata available on

the Booking.com platform.

User intents extraction from reviews. Reviews available on the platform can be

a very rich source of information. Users of the platform can help future travellers to

make the best choices by sharing their experiences. However, in practice, the reviews

tend to be very noisy. Therefore, an essential aspect of our approach is to extract

relevant pieces of information for a visual summary from free-form text. Thus, the

extracted signal has to be adequate for matching the semantic content of images in

a gallery.

Matching text and images. Finally, matching text with images requires represent-

ing all of them in a joint multi-modal space. There has been a recent surge of methods

that leverage free-form text to reduce the need for costly annotations [242, 243, 244]

yielding better performances when cast into multi-modal problems [245, 246, 247,

248, 249, 250], or obtaining better image representations [251, 13]. Most importantly,

CLIP [13] shows that image-text large-scale pretraining gives the ability to learn

the generalizable image representations and enables zero-shot image-text matching,

which we leverage in our approach.
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Figure 7.1.1. Heatmap of most popular topics (x-axis) extracted from reviews for dif-
ferent traveller types at Booking.com. We note that the ranking of the most mentioned
topics differs among traveller segments, making reviews a valuable signal for user segment
personalization.



The main contribution of our work is as follows:

• We introduce an unsupervised method for image collection summarization

personalized for entire segments of users using textual guidance extracted from

reviews. Our approach leverages text and image representations in multi-modal

space.

• We extend previously introduced evaluation metrics for image collection sum-

marization to the segment-personalization use case when no ground-truth

annotations are given.

• In our experiments, we conduct human perceptual studies alongside the quan-

titative evaluation using our proposed metrics and show that reviews provide

an adequate signal for segment personalization.

Image 
Encoder

Image Representation and Clustering

S11 S12 … S1L

S21 S22 … S2L

… … … …

SN1 SN2 … SNL

Topics 
Detection

Swimming pool

Room size

Bed comfort

Topic 
Encoder

y1 y2 … yL

t1

t2

…

tN

Reviews-based Personalisation

K Clusters

Segment
Filtering

and 
Clustering

<Big room and very 
big bathroom.
Comfortable bed. We 
enjoyed the outdoor 
swimming pool!=
Young couple

Repeat for all K clusters

Visual summary

f(x)
x

y

Figure 7.1.2. Overview of our method. First, we extract image embeddings and cluster
them to obtain K (K=4 in this case) semantically separated groups of images. Then, for
each cluster, we calculate the similarities between all the images within the cluster and the
topics extracted from reviews of the specific segment u (here u=Couple). Finally, the selected
images are the ones with the highest similarity to any of the topics.

7.2. Method

In this section, we define a task of personalized image collection summarization for

segments of users and describe in detail all the building blocks of CrossSummarizer.

We also provide the metrics which we use to evaluate our method quantitatively. We

explain how we adapt standard metrics for image collection summarization to our

segment-personalized use case.
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7.2.1. Task Definition

Given a collection of images G, the goal of our method is to select a subset of K

images Gs ¢G that best corresponds to a given user segment u ∈U. We consider two

types of user segments:

• Traveller types: Solo, Couple, Group, Family, Business

• Trip types: Beach, Ski, City, Nature Active, Nature Peaceful

Our personalized summary aims to cover the essential aspects of the whole im-

age gallery while selecting images that show details relevant to the specified user

segment u.

Each of the images in G has a corresponding set of visual classes c ∈ C, and for

each user segment u, we manually define a subset of Cu ¢ C of relevant classes (for

details on how we define C see Appendix 7.6.1). Moreover, we have access to each

property’s textual reviews, labelled with the corresponding segment u.

However, reviews can mention many aspects in just a short piece of text (see

Fig. 7.1.2). Therefore, we represent each review as a set of topics T it covers. Below

we explain all of the steps of our method in detail.

7.2.2. Image Embeddings & Filtering

Let f (xi)→ yi ∈R
D be a feature representation of an image xi ∈G. In this work, we

use a recently proposed MuMIC [243] for image representation f (x), which extends

the image-text contrastive pretraining proposed in CLIP [13] to a multi-label case.

MuMIC learns a multi-modal embedding space by jointly training an image encoder

and text encoder to maximize the cosine similarity of the image and label-text embed-

dings of real labels. The model applies tempered sigmoid-based Binary Cross-Entropy

(BCE) loss on each class and then mean-reduces it (see Eq. 7.1), optimizing across all

classes. Given a batch of images {xi ∈G, i = 1..N} and their associated ground-truth

multi-label vector {ŵi ∈R
|C|, i = 1..N}

ℓBCE =−
1

N|C|

N∑

i=1

|C|∑

j=1

(p jŵi j) · logÃ(wi j)

+(1− ŵi j) · log(1−Ã(wi j)))

(7.1)

where Ã(·) is the Tempered Sigmoid function; wi j are the original output logits

(before applying temperature scaling), which is the pairwise image-text cosine simi-

larity between image xi and class j; and p j is the positive sample weight of class j.

A higher p j indicates that positive samples are given greater weight, increasing the

penalty for identifying false negatives.



We use MuMIC to both extract image embedding as well as to obtain classes C

per each image x ∈G. We then filter out images that are not relevant to given u by

keeping only the subset of images with at least one class c ∈ Cu.

7.2.3. Clustering

For the clustering phase we use KMedoids algorithm [252] implementation 1. We

choose KMedoids as it is robust to outliers and gives high flexibility in choosing K.

We run clustering on the image embeddings using Cosine Similarity (CosSim)

as a similarity metric, such that

CosSim(u,v)=<
u

∥u∥
,

v

∥v∥
>, with u,v ∈R

D (7.2)

where < ·, · > is the inner product in R
D.

Finally, we obtain resulting cluster assignments for each of the images.

7.2.4. Text2topic: Topics Detection Model

We use a recently proposed Text2Topic [253] model, a topic detection model, to

extract user segment preferences and personalize the subset of images based on

their topics of interest. We first filter the reviews by u and then detect the topics

associated with these reviews. To get the topics, we train a classification model with

45 travel-domain topics (see the subset of the topics in the heatmap in Fig. 7.1.1)

using cross-encoder transformer-based architecture [254], which relies on BERT [43].

We train the model with 15,663 positive pairs of reviews and topics and sample X5

negative topics per review. We use the Binary Cross Entropy loss function on the

[CLS] embedding vector of the crossed input [REVIEW] [SEP] [TOPIC] to get the probability

the topic is mentioned in the review.

At inference, we run the model on pairs of reviews and each of the 45 topics to get

the probability scores. Finally, we get the topics T with a probability greater than

0.5 to match with the review.

7.2.5. Matching Images to Topics

Having obtained clusters of images and a list of topics T for given u, Tu ¢ T we

select the final subset of images Gs. We do it by first computing the confidence matrix

1 https://github.com/scikit-learn-contrib/scikit-learn-extra

https://github.com/scikit-learn-contrib/scikit-learn-extra


Algorithm 2: Pseudocode for selecting images
Result: Gs - selected images from the gallery
Inputs : AK - Image-to-cluster assignment x ∈G 7→ {1..K}

S - Confidence matrix from Eq. (7.3)
procedure SelectImages(Lk, S)

Gs ←; // Selected images

ΩT ← {1..|T|} // Indices of active topics

for Cluster k ∈ {1..K} do
// Image indices for cluster k

Ωk ← { j : AK (x j)= k, ∀ j ∈ {1..|G|}}

// Compute best matches within k

i∗, j∗ ← argmax
(i, j)∈ΩT×Ωk

Si j

ΩT ←ΩT \{i∗} // Update active topics

Gs ←Gs ∪ {x∗
j
} // Add selected image

return Gs

S ∈R2 of images G being aligned with topics Tu. We follow [243] and use tempered

sigmoid, formulated as:

Si j =Ã(exp(µ)· < ti, yj >) (7.3)

where µ is the log-parameterized multiplicative scalar, and ti, yj ∈R
D are respec-

tively a topic from Tu and a feature representation f (x j) of an image x j.

We then select the final images by iterating over clusters and selecting the pair

(ti, yj) with the highest similarity within a cluster of representations. The pseudo-code

for this selection is given in the Algorithm 2.

7.2.6. Evaluation Metrics

To ensure our generated summaries are diverse and adequately correspond to

user segments’ interests, we define multiple evaluation metrics. Following [255], we

use Coverage, Representativeness and Diversity metrics. However, we apply some

modifications to match our use case. More specifically, we make sure each one of

the metrics is normalized across samples. Our motivation lies in a large variety of

galleries across properties regarding image redundancy and coverage of relevant

user segment aspects within images.

Diversity. Let us denote d(xi, x j) as a distance between images xi and x j. The

Diversity (Div) metric measures to what extent the diversity in terms of distance



between embeddings of images in Gs is similar to the one in the original gallery G.

We define Div as:

Div=

max
(xi ,x j)∈Gs×Gs

d(xi, x j)

max
(xl ,xm)∈G×G

d(xl , xm)
, (7.4)

where d(·, ·) is computed in image embedding space as:

d(xi, x j)= 1−CosSim( f (xi), f (x j)). (7.5)

Split Per property statistics Totals
#reviews #images #properties #reviews #images

Small between 30 and 150 between 50 and 100 3230 252k 232k
Big 151 < 100 < 3151 1.5M 458k

Table 7.2.1. Dataset split in detail. Overall we collected more than 6000 samples from the
platform. Through stratified sampling, we make sure the distribution in terms of location,
rating, and accommodation type reflects the real distribution.

Representativeness. Then, let us denote µG ,µGs
∈RD as the mean vectors of the

original gallery representations and the selected subset, respectively. Representa-

tiveness (Repr) is defined as:

Repr =CosSim(µG ,µGs
) (7.6)

With the generated summaries, we wish both vectors to be similar in representation,

such that their CosineSimilarity is close to 1.

Coverage. We also measure Coverage (Cov) in the semantic space by using classes

associated with images in G. We adopt the Probabilistic coverage suggested in [255]

and use the probabilities P(c|x) ∈R for a given image x to represent a particular class

c ∈ Cu.

Cov=
1

|Cu|

∑

c∈Cu

PGs
(c)

PG(c)
, (7.7)

where PG(c) = maxx∈G P(c|x). Note that in our work, we use the MuMIC model

to obtain probabilities since it was trained in-domain. However, this could be any

off-the-shelf multi-label image classification method.

With our Coverage metric, we mainly focus on measuring the accuracy of the person-



alization step. Therefore, instead of taking all of the classes in C, we only consider

the ones corresponding to a given user segment u, Cu.

Reviews Coverage. Finally, to measure how well the generated summaries cor-

respond to user segment topics from reviews, we calculate the topics coverage of

selected images. Similarly to Coverage, we use the confidence matrix S ∈ R2 as

probabilities of a topic t j being aligned with the set of selected images Gs. Reviews

Coverage (RCov) is therefore given by:

RCov=
1

|Tu|

|Tu|∑

i=1

max
j∈ΩGs

Si j

max
j∈Ω

Si j

, (7.8)

whereΩ= {1..|G|} andΩGs
= { j : x j ∈Gs,∀ j ∈Ω} are respectively the range of indices

of the images in G and the subset of indices of images that are only in Gs ¢G.

7.3. Experiments

In this section, we provide the experimental results obtained through both offline

evaluation and user studies conducted internally at Booking.com. We also describe

our experimental setup, including details on the dataset collected at the Booking.com

platform and baseline models we compare our CrossSummarizer against.

7.3.1. Experimental Setup

Dataset. We conduct our experiments on the Booking.com dataset consisting of

properties. We collected over 6000 real properties from the platform by carefully

curating the sampling to adequately represent a real distribution in terms of geo-

graphical location, types of accommodation as well as travellers’ experience with a

given property. We do it by applying a stratified sampling technique with a country,

type of accommodation, and property rating being the factors. We do not share our

dataset, however, we note that the examples can easily be downloaded (both images

and reviews) since the data is publicly available on the Booking.com site.

Each of the samples in our dataset consists of a set of uploaded by property

owners images, which correspond to a gallery, and a set of reviews of past travellers’

experiences. Alongside sampled reviews, we also include metadata about the type of

traveller that authored a particular review.
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Since samples in our dataset significantly vary in amounts of both images and

reviews, we split the dataset into two groups according to the size of galleries and

the number of reviews. Precisely:

• Small - properties with the size of a gallery between 50 and 100 photos and 30

- 150 reviews,

• Big - gallery sizes of 100 < photos and 150 < reviews.

More details on precise numbers of our dataset split are given in Tab. 7.2.1. In our

experiment, we report results separately for the two aforementioned splits.

Baselines. To the best of our knowledge, none of the proposed methods for image

collection summarization such as [241, 256] nor the multimodal ones [249, 247, 257]

tackle the personalization case. For evaluation purposes, we implement multiple

baselines, which we describe in detail below.

Default Clustering (Def) - we compare against a simple no-personalization approach

by running clustering on image embeddings and omitting the filtering step. The

selected K images are resulting cluster centres. A similar approach was proposed

in [258] for videos.

Clustering with personalization (Clust-W/P) - we implement the approach without

topic-based refinement and select cluster centres as the summarization. The ap-

proach differs from the Clustering setting by an additional filtering phase based on

relevance to the particular user segment classes being associated with images in

the gallery (see Sec. 7.2.2).

Topic-based personalization (TopicBased) - we also implement the approach based

only on the topic’s similarity with images, without a clustering step. We extract

image and topic embeddings and apply user segment filtering. We calculate the

similarity matrix between all the image and topic embeddings and choose top K

scores in the matrix. We make sure each image gets selected only once and apply

the selection process iteratively. The pseudo-code is similar to the final approach, as

we simply take argmax on the entire confidence matrix S, which is being decreased

with each iteration by selected images’ columns.

Note that for all of the approaches, we use the same image representations

obtained with MuMIC, which was trained on Booking.com multi-label classification

dataset as described in [243]. For the filtering phase, we create a mapping of MuMIC’s

classes for each user segment beforehand and use the mapping at inference time.

7.3.2. Offline Evaluation

Evaluation protocol We first run the evaluation procedure offline internally at

Booking.com. For all the methods relying on KMedoids algorithm, we set the same



random seed for a fair comparison. We run experiments with a fixed K = 9 corre-

sponding to the current Booking.com setting.

Small Big

Method Div↑ Repr↑ Cov↑ RCov↑ Div↑ Repr↑ Cov↑ RCov↑

No Personalization

Default Clustering [258] 0.947 0.931 0.516 0.581 0.925 0.929 0.430 0.488

Personalization

Clustering with Personalization 0.903 0.931 0.578 0.656 0.932 0.928 0.487 0.521
Topic-Based Personalization 0.903 0.733 0.365 0.649 0.874 0.775 0.261 0.707
CrossSummarizer (Cross-modal) 0.963 0.903 0.617 0.729 0.950 0.885 0.524 0.677

Table 7.3.1. Quantitative evaluation. We report the results for two different dataset splits:
small and big galleries and the number of reviews.

Quantitative results The results of our experiments are presented in Tab. 7.3.1.

Looking at Cov and RCov, we observe that our cross-modal approach outperforms

the baselines in the segment personalization task, especially for the Small dataset

split. Compared to the Def setting, we observe approximately 0.1 gains in Cov for

both dataset splits and a significant improvement over RCov. For the Big dataset

split, we report a higher RCov for the TopicBased approach. This is expected since

the approach is based on maximizing the similarity between topics and images,

which corresponds to the Eq. 7.8.

Moreover, our cross-modal approach outperforms the rest of the methods in

terms of Diversity, indicating that the personalization step produces more diverse

summarization.

Relying only on reviews, which corresponds to the results of a Topic-based method,

gives a significantly lower Representativeness and poor visual user segment Coverage.

Coverage gain of our CrossSummarizer over the Clust-W/P approach also emphasizes

the need for using two modalities in our task. Overall, we observe a clear trade-off

between Diversity and Representativeness. CrossSummarizer finds a sweet spot

between the two, giving an excellent segment personalization result at the same

time.

Qualitative results. Alongside the quantitative evaluation, we also provide some

qualitative results. Fig. 7.4.1 shows the visual comparison between the two baseline

approaches and our method. The example shows a non-personalized Def result and

the personalized results obtained with Clust-W/P and CrossSummarizer approach

for Ski trip type and K = 8.
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Figure 7.3.1. Results of our user studies. We report the results separately for each user
segment (x-axis).

All of the approaches give a set of diverse images without any redundant pho-

tos. However, our cross-modal model provides the best personalization result. We

highlight the photos that are relevant to the user segment: a picture of a skier and a

photo of a sauna. We can also see that contrary to the Clust-W/P approach, with our

CrossSummarizer, the selected image of a property from outside (bottom right) was

taken in the wintertime (expected for Ski trip type).

7.3.3. User Studies

Experimental setup. In addition to offline evaluation, we conduct human percep-

tual studies in the form of an anonymized paired test. We compare two methods:

Clust-W/P approach and CrossSummarizer. We manually select 210 samples of

properties with galleries that contain photos relevant to the specified user segment.

We split the samples across 5 participants. The samples are uniformly distributed

over the dataset split (Small, Big) and user segment types.

The participants were asked to answer the question: Which of the models (A or B)

gives a better summary for a given user segment? We assign a score of 1 for a model

that performs better than the other and 0 otherwise. We also allow for a 0.5 score in

case of a tie.

Results. The conducted user studies indicate the superiority of our CrossSum-

marizer approach with an average score of 0.66±0.38 for all user segments over



Clust-W/P 0.34±0.38. Additionally, in Fig. 7.3.1, we provide detailed results for each

user segment. We observe that CrossSummarizer obtains higher average scores

for most of the segments in our experiments, except for only Business traveller

type. To confirm the statistical significance of our studies, we perform the paired

T-test [259] with a null hypothesis of average scores for models A and B being equal

and the alternative hypothesis of model A scoring lower than model B. The results

(t(209)=−5.537; p < 5e−8) let us reject the null hypothesis and accept the alternative

hypothesis.

7.4. Application

This section covers some practical aspects of our approach and how it is leveraged

at Booking.com. Two essential parts are first run offline, which are the Text2Topic

model for topic extraction and the MuMIC model for image embedding extraction

and image multi-class annotations. The results are then stored in the database and

accessed at runtime. It takes approximately 170 ms for the MuMIC model to run on

a batch of 100 images and 244 ms for the Text2Topic model to run prediction on a

batch of 100 reviews. We leverage GPU computation for this purpose.

7.4.1. Deployment & Maintenance

The model is served with Amazon SageMaker and deployed on the Booking.com

Content Intelligence Platform (CIP) [243]. CIP is a stream processing platform based

on Apache Flink. It consumes real-time events from Kafka topics (e.g. images up-

loaded by Booking.com partners) and generates model-based predictions. The same

architectural design allows CIP to be also used for backfilling purposes. Backfilling

refers to the enrichment of historical data with newly deployed model predictions.

We leverage the mentioned design by simulating historical data events and pushing

them to Kafka.

CIP is designed to achieve high prediction throughput while keeping a low la-

tency. It achieves that by leveraging Apache Flink’s asynchronous I/O operator to

perform concurrent asynchronous HTTP calls to a model endpoint. However, this

optimization mechanism relies on the assumption that each model prediction can

be made independently. This assumption does not hold for summarization models

where a group of events should be sent to the model together in a single prediction

query.

We built upon Apache Flink’s windowing mechanism to implement the grouping

of events that should be sent to the model endpoint. Whenever a new call to the
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model should be triggered, an event containing the request metadata (e.g. a hotel

id) is sent to Kafka. Then, the matching image data is fetched by issuing calls to

an external service holding image data. Those calls are executed independently

and concurrently. Following that, images are grouped in the same window. Images

are accumulated within the window as soon as they are fetched, and the window is

closed after a predefined period (e.g. 3 seconds). Then, the images are sent together

to the model endpoint for prediction.

7.4.2. Application example

Default 
Clustering

Clustering with 
personalization

Cross-modal
….

Figure 7.4.1. Example results of summaries of K = 8 images for one of the properties.
We compare Def (top), and personalized methods (bottom) on this property’s visual summa-
rization. The presented personalization examples here are for a Ski trip type. We highlight
in red the selected images which are relevant to this user segment.

The applications of our image collection summarization approach at Booking.com

are three-fold:

• Image subset selection optimization for large collections of images when given

a constraint on a number of images or smaller displays.

• Visual content personalization based on traveler type.

• Visual content personalization based on trip type.

Fig. 7.4.1 shows some qualitative results of our CrossSummarizer for the third bullet

point. Using this personalization approach, we expect to reduce the friction from the

decision-making process as users will have a better understanding of the property

at an earlier step.

Our proposed model is currently under experimentation. When deploying the

personalized CrossSummarizer model, we compare it with the current model, which



is produced by the Def model, through A/B test experimentation on the CTR (click

to ratio) metric.

We also note that personalizing summaries of collections of images is a relevant

task for most e-commerce websites. Hence, our method could also be applied to any

other personalization task, such as product recommendations where a multi-modal

input is available (reviews + images).

7.5. Conclusions & Limitations

We presented a method for personalized image collection summarization for

entire segments of users. Our approach is capable of taking into account users’

intents when producing summaries of large image collections. As the personalization

signal, we use other travelers’ experiences with properties, which we extract from

the reviews. We implemented and tested our method on the Booking.com platform

and our experiments, including human perceptual study, indicate that our proposed

approach yields good results on the diversity and representativeness axes. The

comparison with other baselines indicates that our proposed method performs the

best in terms of personalization. Future works include A/B tests of our model in

a production environment to measure the real-world impact.

The main limitation of our method is handling samples that are considered

a cold-start zone, e.g. having a limited number of reviews but complete image galleries.

This, however, can be addressed by leveraging information from other properties of

a similar profile, which we leave for future work.

7.6. Additional material

7.6.1. Definition of relevant image classes

We provide more details on how we defined visual classes for each of the user

segments considered in this work. We first obtain a list of relevant classes in the

Booking.com context from domain experts, i.e. product managers who, based on the

statistics of the content of image galleries, decided upon the most frequent classes,

leading to a dataset with 120 classes. Having obtained the list of visual classes, we

then ask 3 independent experts to associate classes with users. In Tab. 7.6.1, we

present exemplary classes for each considered segment.
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User Segment Image classes

Solo Bar, Entertainment Center, Lobby or reception, TV/Multimedia, Public transport
Couple Private dining area, Bed, Sea view, Fireplace, Bathtub, Jaccuzzi/Hot tub
Family Aqua park, BBQ facilities, Children playground (outdoors), Dishwasher, Game room
Group Buffet, Kitchen or kitchenette, Billiard, Water sport, Seating area (sofa, living room, etc.)

Business Business traveler, Business/Conference Room, Desk (for work), Lobby or reception, Ironing facilities
Beach Beach, Sea view, Sun umbrella, Sunbed, Sunset

Ski Heating (not air conditioner), Mountain view, Winter, Fireplace, Skiing
Nature Peaceful Mountain view, River/Lake view, Natural landscape, Yoga, Garden/garden view
Nature Active Yoga, Cycling/Biking, Horse-riding, Birds eye view, Water sport

City Landmark (attractions, sightseeing), Neighborhood/Street, City view, Car, Public transport

Table 7.6.1. Exemplary image classes per user segment.



8. Final Remarks

In this chapter, we summarize the contributions presented in this thesis and

give an overview of some of the open problems and challenges in adapting visual

foundation models.

8.1. Summary of contributions

In this thesis, we have explored how pre-trained image-text aligned visual foun-

dation models, or VLMs, can be effectively utilized for downstream tasks with

minimal additional supervision. We presented five key contributions: (1) CLIP-DIY,

which extends CLIP to open- vocabulary semantic segmentation through modified

inference rather than retraining; (2) CLIP- DINOiser, which enhances CLIP repre-

sentations with complementary model-obtained localization priors via a lightweight

adaptation module; (3) an analysis of how textual prompts and pre-training data

distribution understanding can improve downstream performance on the example

of open-vocabulary semantic segmentation; (4) an evaluation framework using Vi-

sual Question Answering to determine which foundation models best suit specific

applications; and (5) a real-world application demonstrating personalized image

collection summarization using a VLM’s multimodal capability with minimal an-

notations. Together, these findings demonstrate promising directions for adapting

visual foundation models to complex visual understanding tasks efficiently while

minimizing computational and annotation requirements.

8.2. Open problems

Understanding pre-training datasets. As discussed in Sec. 2.1.3, data curation

proved to be important in developing stronger visual foundation models. Chap-

ter 5 extends this insight by demonstrating how analyzing concept distribution

patterns within a VLM’s pre-training dataset can address specific challenges in

open-vocabulary semantic segmentation. However, our contribution merely initiates

a deeper investigation into the complex cross-modal alignment between textual

concepts and visual patch features. Future research directions include exploration
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of hierarchical relationships between concepts in the CLIP representation space,

including synonymous terms and part-whole (meronymic) relationships, which could

substantially enhance open-vocabulary method performance while providing deeper

insights into the representation space. Furthermore, developing an evaluation

methodology that quantifies the effectiveness with which patch-level representations

maintain concept relationships and hierarchical structures represents a promising

avenue for research. Such an assessment framework could serve as a valuable tool

for guiding the development of improved CLIP models.

Leveraging the complementarity of different paradigms. In Chapter 3 and

Chapter 4, we address open-vocabulary semantic segmentation by exploiting the com-

plementary strengths of self-supervised features and image-text-aligned represen-

tations. Recent research work has explored hybrid foundation models that combine

contrastive image-text pre-training with self-supervision methodologies [60, 59, 62].

While these hybrid approaches demonstrate enhanced feature quality when eval-

uated on fine-grained downstream tasks with full fine-tuning in certain setups,

their effectiveness in zero-shot scenarios remains less definitive. Current evidence

indicates that zero-shot evaluations of patch representations for open-vocabulary

semantic segmentation using these hybrid approaches have not yet surpassed the

performance of, e.g., CLIP-DINOiser, which utilizes both models, CLIP and DINO,

trained separately with their respective objectives. We believe that ongoing eval-

uation of feature performance for fine-grained tasks, including the contributions

presented in this work, will be valuable in guiding the future development of more

sophisticated and powerful hybrid foundation models.

Fair evaluation protocols. In Chapter 6, we developed an adaptation protocol for

Visual Question Answering that establishes a controlled evaluation environment for

comparative analysis of visual representation models. As VQA inherently requires

comprehensive supervision, our methodological framework incorporated fine-tuning

with a full set of image-question-answer triplets. The design of rigorous evaluation

protocols—particularly those that involve parametric optimization—necessitates

careful consideration of multiple experimental variables to ensure methodologi-

cal validity. The memory constraint mechanism implemented in our experimental

design represents one approach to standardizing the dimensionality of the represen-

tation, thereby facilitating direct comparability. A more comprehensive evaluation

paradigm would additionally analyze representations extracted from various layers

or parts of a foundation model, similar to our ablative study in Sec. 4.6.2. Sig-

nificantly, the assumption of training procedure invariance across representation

architectures may be methodologically unsound, as different visual encoders may



exhibit optimal performance under distinct optimization regimes. This observation

suggests that standardized evaluation frameworks should potentially incorporate

architecture-specific training hyperparameter optimization to assess each model’s

true representational capacity.

Real-world challenges. In Chapter 7, we demonstrate the practical application of

visual foundation models to real-world challenges through our work on personalized

visual summaries. It is important to note that the domain of hotel imagery examined

in this study closely aligns with the images sourced from the Internet used to train

CLIP, thus representing a relatively favorable transfer scenario. This thesis does

not explore adaptation techniques for more specialized visual domains such as

medical imaging, biological microscopy, or satellite-based earth monitoring, areas

that present substantially different visual distributions from CLIP’s training data.

Although we hypothesize that several methodologies introduced in our research

could potentially extend to these specialized domains, a systematic investigation of

such cross-domain adaptation strategies remains a promising direction for future

research.
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